114
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Anti-inflammatory property of Kalpaamruthaa on myocardium in type 2 diabetes mellitus induced cardiovascular complication

, &
Pages 119-125 | Received 10 May 2012, Accepted 10 Jul 2012, Published online: 08 Aug 2012

References

  • Ceriello, A., Motz, E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol 2004, 24, 816–823.
  • Green, K., Brand, M.D., Murphy, M.P. Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes. Diabetes 2004, 53, 110–118.
  • Zhang, N., Andresen, B.T., Zhang, C. Inflammation and reactive oxygen species in cardiovascular disease. World J Cardiol 2010, 2, 408–410.
  • Pashkow, F.J. Oxidative Stress and Inflammation in Heart Disease: Do Antioxidants Have a Role in Treatment and/or Prevention? Int J Inflam 2011, 2011, 514623.
  • Dandona, P., Aljada, A., Bandyopadhyay, A. Inflammation: The link between insulin resistance, obesity and diabetes. Trends Immunol 2004, 25, 4–7.
  • Xu, Y., Whitmer, K. C-reactive protein and cardiovascular disease in people with diabetes: High-sensitivity CRP testing can help assess risk for future cardiovascular disease events in this population. Am J Nurs 2006, 106, 66–72.
  • Tak, P.P., Firestein, G.S. NF-kappaB: A key role in inflammatory diseases. J Clin Invest 2001, 107, 7–11.
  • Collins, T., Cybulsky, M.I. NF-kappaB: Pivotal mediator or innocent bystander in atherogenesis? J Clin Invest 2001, 107, 255–264.
  • Cosentino, F., Eto, M., De Paolis, P., van der Loo, B., Bachschmid, M., Ullrich, V., Kouroedov, A., Delli Gatti, C., Joch, H., Volpe, M., Lüscher, T.F. High glucose causes upregulation of cyclooxygenase-2 and alters prostanoid profile in human endothelial cells: Role of protein kinase C and reactive oxygen species. Circulation 2003, 107, 1017–1023.
  • Dinh, W., Füth, R., Nickl, W., Krahn, T., Ellinghaus, P., Scheffold, T., Bansemir, L., Bufe, A., Barroso, M.C., Lankisch, M. Elevated plasma levels of TNF-α and interleukin-6 in patients with diastolic dysfunction and glucose metabolism disorders. Cardiovasc Diabetol 2009, 8, 58.
  • Aggarwal, B.B. Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals. Annu Rev Nutr 2010, 30, 173–199.
  • Park, E.K., Rhee, H.I., Jung, H.S., Ju, S.M., Lee, Y.A., Lee, S.H., Hong, S.J., Yang, H.I., Yoo, M.C., Kim, K.S. Antiinflammatory effects of a combined herbal preparation (RAH13) of Phellodendron amurense and Coptis chinensis in animal models of inflammation. Phytother Res 2007, 21, 746–750.
  • Khare, C.P. (2004). Encyclopedia of Indian medicinal plants. Berlin, Heidelberg, Germany: Springer-Verlag, 200–203.
  • Premalatha, B. Semecarpus anacardium Linn. nuts–a boon in alternative medicine. Indian J Exp Biol 2000, 38, 1177–1182.
  • Mythilypriya, R., Shanthi, P., Sachdanandam, P. Analgesic, antipyretic and Ulcerogenic properties of an indigenous formulation–Kalpaamruthaa. Phytother Res 2007, 21, 574–578.
  • Ghosal, S., Tripathy, V.K., Chouhan, S. Active constituents of Emblica officinalis: Part I-the chemistry and anti-oxidant effect of two new hydrolysable tannins, Emblicanin A&B. Ind J Chem 1996, 35, 941–948.
  • Bors, W., Michel, C., Schikora, S. Interaction of flavonoids with ascorbate and determination of their univalent redox potentials: A pulse radiolysis study. Free Radic Biol Med 1995, 19, 45–52.
  • Luo, W., Zhaoa, M., Yangb, B., Rena, J., Shend, G., Raod, G. Antioxidant and antiproliferative capacities of phenolics purified from Phyllanthus emblica L. fruit. Food Chem 2011, 126, 277–282.
  • Perianayagam, J.B., Sharma, S.K., Joseph, A., Christina, A.J. Evaluation of anti-pyretic and analgesic activity of Emblica officinalis Gaertn. J Ethnopharmacol 2004, 95, 83–85.
  • Mathur, R., Sharma, A., Dixit, V.P., Varma, M. Hypolipidaemic effect of fruit juice of Emblica officinalis in cholesterol-fed rabbits. J Ethnopharmacol 1996, 50, 61–68.
  • Liu, X., Zhao, M., Wu, K., Chai, X., Yu, H., Tao, Z., Wang, J. Immunomodulatory and anticancer activities of phenolics from emblica fruit (Phyllanthus emblica L.). Food Chem 2012, 131, 685–690.
  • Veena, K., Shanthi, P., Sachdanandam, P. The biochemical alterations following administration of Kalpaamruthaa and Semecarpus anacardium in mammary carcinoma. Chem Biol Interact 2006, 161, 69–78.
  • Latha, R., Shanthi, P., Sachdanandam, P. Antioxidant and anti-apoptotic properties of Kalpaamruthaa in type 2 diabetes mellitus induced cardiovascular complications. Biom Prev Nutri 2012. DOI:10.1016/j.bionut.2012.03.003
  • (1972). Formulary of Siddha Medicine. 2nd edition. Madras: Indian Medicine Practitioners Co-operative Pharmacy and Stores Ltd, 197.
  • Xie, W., Xing, D., Sun, H., Wang, W., Ding, Y., Du, L. The effects of Ananas comosus L. leaves on diabetic-dyslipidemic rats induced by alloxan and a high-fat/high-cholesterol diet. Am J Chin Med 2005, 33, 95–105.
  • Marsh, S.A., Dell’italia, L.J., Chatham, J.C. Interaction of diet and diabetes on cardiovascular function in rats. Am J Physiol Heart Circ Physiol 2009, 296, 282–292.
  • Connell, E.D., Connell, J.T. C-reactive protein in pregnancy and contraception. Am J Obstet Gynecol 1971, 110, 633–639.
  • Du Vigneaud, V., Karr, W.G. Carbohydrate utilization rate of disappearance of d-glucose from the blood. J Biol Chem 1925, 66, 281–300.
  • Othman, R.A., Moghadasian, M.H. Beyond cholesterol-lowering effects of plant sterols: Clinical and experimental evidence of anti-inflammatory properties. Nutr Rev 2011, 69, 371–382.
  • Mythilypriya, R., Sachdanandam, P.S., Sachdanandam, P. Ameliorating effect of Kalpaamruthaa, a Siddha preparation in adjuvant induced arthritis in rats with reference to changes in proinflammatory cytokines and acute phase proteins. Chem Biol Interact 2009, 179, 335–343.
  • Bouché, C., Serdy, S., Kahn, C.R., Goldfine, A.B. The cellular fate of glucose and its relevance in type 2 diabetes. Endocr Rev 2004, 25, 807–830.
  • Blake, G.J., Ridker, P.M. Novel clinical markers of vascular wall inflammation. Circ Res 2001, 89, 763–771.
  • Ballou, S.P., Lozanski, G. Induction of inflammatory cytokine release from cultured human monocytes by C-reactive protein. Cytokine 1992, 4, 361–368.
  • Jain, S.K., Rains, J., Croad, J., Larson, B., Jones, K. Curcumin supplementation lowers TNF-α, IL-6, IL-8, and MCP-1 secretion in high glucose-treated cultured monocytes and blood levels of TNF-α, IL-6, MCP-1, glucose, and glycosylated hemoglobin in diabetic rats. Antioxid Redox Signal 2009, 11, 241–249.
  • Haffner, S.M., Greenberg, A.S., Weston, W.M., Chen, H., Williams, K., Freed, M.I. Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Circulation 2002, 106, 679–684.
  • Bierhaus, A., Schiekofer, S., Schwaninger, M., Andrassy, M., Humpert, P.M., Chen, J., Hong, M., Luther, T., Henle, T., Klöting, I., Morcos, M., Hofmann, M., Tritschler, H., Weigle, B., Kasper, M., Smith, M., Perry, G., Schmidt, A.M., Stern, D.M., Häring, H.U., Schleicher, E., Nawroth, P.P. Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes 2001, 50, 2792–2808.
  • Li, Y., Qi, J., Liu, K., Li, B., Wang, H., Jia, J. Peroxynitrite-induced nitration of cyclooxygenase-2 and inducible nitric oxide synthase promotes their binding in diabetic angiopathy. Mol Med 2010, 16, 335–342.
  • Kim, S.F., Huri, D.A., Snyder, S.H. Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2. Science 2005, 310, 1966–1970.
  • Baker, C.S., Hall, R.J., Evans, T.J., Pomerance, A., Maclouf, J., Creminon, C., Yacoub, M.H., Polak, J.M. Cyclooxygenase-2 is widely expressed in atherosclerotic lesions affecting native and transplanted human coronary arteries and colocalizes with inducible nitric oxide synthase and nitrotyrosine particularly in macrophages. Arterioscler Thromb Vasc Biol 1999, 19, 646–655.
  • Wu, G., Luo, J., Rana, J.S., Laham, R., Sellke, F.W., Li, J. Involvement of COX-2 in VEGF-induced angiogenesis via P38 and JNK pathways in vascular endothelial cells. Cardiovasc Res 2006, 69, 512–519.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.