119
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Brief heat treatment causes a structural change and enhances cytotoxicity of the Escherichia coli α-hemolysin

, , &
Pages 15-27 | Received 17 May 2012, Accepted 17 Aug 2012, Published online: 21 Sep 2012

References

  • Foxman, B., Barlow, R., D’Arcy, H., Gillespie, B., Sobel, J.D. Urinary tract infection: self-reported incidence and associated costs. Ann Epidemiol 2000, 10, 509–515.
  • Bergeron, M.G. Treatment of pyelonephritis in adults. Med Clin North Am 1995, 79, 619–649.
  • May, A.K., Gleason, T.G., Sawyer, R.G., Pruett, T.L. Contribution of Escherichia coli α-hemolysin to bacterial virulence and to intraperitoneal alterations in peritonitis. Infect Immun 2000, 68, 176–183.
  • May, A.K., Sawyer, R.G., Gleason, T., Whitworth, A., Pruett, T.L. In vivo cytokine response to Escherichia coli α-hemolysin determined with genetically engineered hemolytic and nonhemolytic E. coli variants. Infect Immun 1996, 64, 2167–2171.
  • Mobley, H.L., Green, D.M., Trifillis, A.L., Johnson, D.E., Chippendale, G.R., Lockatell, C.V., Jones, B.D., Warren, J.W. Pyelonephritogenic Escherichia coli and killing of cultured human renal proximal tubular epithelial cells: role of hemolysin in some strains. Infect Immun 1990, 58, 1281–1289.
  • Nagy, G., Altenhoefer, A., Knapp, O., Maier, E., Dobrindt, U., Blum-Oehler, G., Benz, R., Emody, L., Hacker, J. Both α-haemolysin determinants contribute to full virulence of uropathogenic Escherichia coli strain 536. Microbes Infect 2006, 8, 2006–2012.
  • Pellett, S., Welch, R.A. Escherichia coli hemolysin mutants with altered target cell specificity. Infect Immun 1996, 64, 3081–3087.
  • Haugen, B.J., Pellett, S., Redford, P., Hamilton, H.L., Roesch, P.L., Welch, R.A. In vivo gene expression analysis identifies genes required for enhanced colonization of the mouse urinary tract by uropathogenic Escherichia coli strain CFT073 dsdA. Infect Immun 2007, 75, 278–289.
  • Frey, J., Kuhnert, P. RTX toxins in Pasteurellaceae. Int J Med Microbiol 2002, 292, 149–158.
  • Narayanan, S.K., Nagaraja, T.G., Chengappa, M.M., Stewart, G.C. Leukotoxins of gram-negative bacteria. Vet Microbiol 2002, 84, 337–356.
  • Welch, R.A. RTX toxin structure and function: a story of numerous anomalies and few analogies in toxin biology. Curr Top Microbiol Immunol 2001, 257, 85–111.
  • Boehm, D.F., Welch, R.A., Snyder, I.S. Domains of Escherichia coli hemolysin (HlyA) involved in binding of calcium and erythrocyte membranes. Infect Immun 1990, 58, 1959–1964.
  • Boehm, D.F., Welch, R.A., Snyder, I.S. Calcium is required for binding of Escherichia coli hemolysin (HlyA) to erythrocyte membranes. Infect Immun 1990, 58, 1951–1958.
  • Ostolaza, H., Soloaga, A., Goñi, F.M. The binding of divalent cations to Escherichia coli α-haemolysin. Eur J Biochem 1995, 228, 39–44.
  • Rowe, G.E., Pellett, S., Welch, R.A. Analysis of toxinogenic functions associated with the RTX repeat region and monoclonal antibody D12 epitope of Escherichia coli hemolysin. Infect Immun 1994, 62, 579–588.
  • Sánchez-Magraner, L., Viguera, A.R., García-Pacios, M., Garcillán, M.P., Arrondo, J.L., de la Cruz, F., Goñi, F.M., Ostolaza, H. The calcium-binding C-terminal domain of Escherichia coli α-hemolysin is a major determinant in the surface-active properties of the protein. J Biol Chem 2007, 282, 11827–11835.
  • Bakás, L., Chanturiya, A., Herlax, V., Zimmerberg, J. Paradoxical lipid dependence of pores formed by the Escherichia coli α-hemolysin in planar phospholipid bilayer membranes. Biophys J 2006, 91, 3748–3755.
  • Bhakdi, S., Greulich, S., Muhly, M., Eberspächer, B., Becker, H., Thiele, A., Hugo, F. Potent leukocidal action of Escherichia coli hemolysin mediated by permeabilization of target cell membranes. J Exp Med 1989, 169, 737–754.
  • Eberspächer, B., Hugo, F., Bhakdi, S. Quantitative study of the binding and hemolytic efficiency of Escherichia coli hemolysin. Infect Immun 1989, 57, 983–988.
  • Felmlee, T., Pellett, S., Welch, R.A. Nucleotide sequence of an Escherichia coli chromosomal hemolysin. J Bacteriol 1985, 163, 94–105.
  • Hyland, C., Vuillard, L., Hughes, C., Koronakis, V. Membrane interaction of Escherichia coli hemolysin: flotation and insertion-dependent labeling by phospholipid vesicles. J Bacteriol 2001, 183, 5364–5370.
  • Koschinski, A., Repp, H., Unver, B., Dreyer, F., Brockmeier, D., Valeva, A., Bhakdi, S., Walev, I. Why Escherichia coli α-hemolysin induces calcium oscillations in mammalian cells–the pore is on its own. FASEB J 2006, 20, 973–975.
  • Lally, E.T., Hill, R.B., Kieba, I.R., Korostoff, J. The interaction between RTX toxins and target cells. Trends Microbiol 1999, 7, 356–361.
  • Moayeri, M., Welch, R.A. Effects of temperature, time, and toxin concentration on lesion formation by the Escherichia coli hemolysin. Infect Immun 1994, 62, 4124–4134.
  • Moayeri, M., Welch, R.A. Prelytic and lytic conformations of erythrocyte-associated Escherichia coli hemolysin. Infect Immun 1997, 65, 2233–2239.
  • Sánchez-Magraner, L., Cortajarena, A.L., Goñi, F.M., Ostolaza, H. Membrane insertion of Escherichia coli α-hemolysin is independent from membrane lysis. J Biol Chem 2006, 281, 5461–5467.
  • Schindel, C., Zitzer, A., Schulte, B., Gerhards, A., Stanley, P., Hughes, C., Koronakis, V., Bhakdi, S., Palmer, M. Interaction of Escherichia coli hemolysin with biological membranes. A study using cysteine scanning mutagenesis. Eur J Biochem 2001, 268, 800–808.
  • Stanley, P., Koronakis, V., Hughes, C. Acylation of Escherichia coli hemolysin: a unique protein lipidation mechanism underlying toxin function. Microbiol Mol Biol Rev 1998, 62, 309–333.
  • Forestier, C., Welch, R.A. Identification of RTX toxin target cell specificity domains by use of hybrid genes. Infect Immun 1991, 59, 4212–4220.
  • Langston, K.G., Worsham, L.M., Earls, L., Ernst-Fonberg, M.L. Activation of hemolysin toxin: relationship between two internal protein sites of acylation. Biochemistry 2004, 43, 4338–4346.
  • Lim, K.B., Walker, C.R., Guo, L., Pellett, S., Shabanowitz, J., Hunt, D.F., Hewlett, E.L., Ludwig, A., Goebel, W., Welch, R.A., Hackett, M. Escherichia coli α-hemolysin (HlyA) is heterogeneously acylated in vivo with 14-, 15-, and 17-carbon fatty acids. J Biol Chem 2000, 275, 36698–36702.
  • Herlax, V., Bakás, L. Acyl chains are responsible for the irreversibility in the Escherichia coli α-hemolysin binding to membranes. Chem Phys Lipids 2003, 122, 185–190.
  • Herlax, V., Bakas, L. Fatty acids covalently bound to α-hemolysin of Escherichia coli are involved in the molten globule conformation: implication of disordered regions in binding promiscuity. Biochemistry 2007, 46, 5177–5184.
  • Stanley, P., Packman, L.C., Koronakis, V., Hughes, C. Fatty acylation of two internal lysine residues required for the toxic activity of Escherichia coli hemolysin. Science 1994, 266, 1992–1996.
  • Cortajarena, A.L., Goñi, F.M., Ostolaza, H. Glycophorin as a receptor for Escherichia coli α-hemolysin in erythrocytes. J Biol Chem 2001, 276, 12513–12519.
  • Cortajarena, A.L., Goni, F.M., Ostolaza, H. A receptor-binding region in Escherichia coli α-haemolysin. J Biol Chem 2003, 278, 19159–19163.
  • Lally, E.T., Kieba, I.R., Sato, A., Green, C.L., Rosenbloom, J., Korostoff, J., Wang, J.F., Shenker, B.J., Ortlepp, S., Robinson, M.K., Billings, P.C. RTX toxins recognize a β2 integrin on the surface of human target cells. J Biol Chem 1997, 272, 30463–30469.
  • Morova, J., Osicka, R., Masin, J., Sebo, P. RTX cytotoxins recognize β2 integrin receptors through N-linked oligosaccharides. Proc Natl Acad Sci USA 2008, 105, 5355–5360.
  • Valeva, A., Walev, I., Kemmer, H., Weis, S., Siegel, I., Boukhallouk, F., Wassenaar, T.M., Chavakis, T., Bhakdi, S. Binding of Escherichia coli hemolysin and activation of the target cells is not receptor-dependent. J Biol Chem 2005, 280, 36657–36663.
  • Dassanayake, R.P., Maheswaran, S.K., Srikumaran, S. Monomeric expression of bovine β2-integrin subunits reveals their role in Mannheimia haemolytica leukotoxin-induced biological effects. Infect Immun 2007, 75, 5004–5010.
  • Dassanayake, R.P., Shanthalingam, S., Davis, W.C., Srikumaran, S. Mannheimia haemolytica leukotoxin-induced cytolysis of ovine (Ovis aries) leukocytes is mediated by CD18, the β subunit of β2-integrins. Microb Pathog 2007, 42, 167–173.
  • Lawrence, P.K., Dassanayake, R.P., Knowles, D.P., Srikumaran, S. Transfection of non-susceptible cells with Ovis aries recombinant lymphocyte function-associated antigen 1 renders susceptibility to Mannheimia haemolytica leukotoxin. Vet Microbiol 2007, 125, 91–99.
  • Lawrence, P.K., Nelson, W.R., Liu, W., Knowles, D.P., Foreyt, W.J., Srikumaran, S. β(2) integrin Mac-1 is a receptor for Mannheimia haemolytica leukotoxin on bovine and ovine leukocytes. Vet Immunol Immunopathol 2008, 122, 285–294.
  • Månsson, L.E., Kjäll, P., Pellett, S., Nagy, G., Welch, R.A., Bäckhed, F., Frisan, T., Richter-Dahlfors, A. Role of the lipopolysaccharide-CD14 complex for the activity of hemolysin from uropathogenic Escherichia coli. Infect Immun 2007, 75, 997–1004.
  • Atapattu, D.N., Czuprynski, C.J. Mannheimia haemolytica leukotoxin binds to lipid rafts in bovine lymphoblastoid cells and is internalized in a dynamin-2- and clathrin-dependent manner. Infect Immun 2007, 75, 4719–4727.
  • Fong, K.P., Pacheco, C.M., Otis, L.L., Baranwal, S., Kieba, I.R., Harrison, G., Hersh, E.V., Boesze-Battaglia, K., Lally, E.T. Actinobacillus actinomycetemcomitans leukotoxin requires lipid microdomains for target cell cytotoxicity. Cell Microbiol 2006, 8, 1753–1767.
  • Vakorina, T.I., Klyshko, E.V., Monastyrnaya, M.M., Kozlovskaya, E.P. Conformational stability and hemolytic activity of actinoporin RTX-SII from the sea anemone Radianthus macrodactylus. Biochemistry Mosc 2005, 70, 790–798.
  • Atapattu, D.N., Aulik, N.A., McCaslin, D.R., Czuprynski, C.J. Brief heat treatment increases cytotoxicity of Mannheimia haemolytica leukotoxin in an LFA-1 independent manner. Microb Pathog 2009, 46, 159–165.
  • Gursky, O., Atkinson, D. High- and low-temperature unfolding of human high-density apolipoprotein A-2. Protein Sci 1996, 5, 1874–1882.
  • Gursky, O., Atkinson, D. Thermal unfolding of human high-density apolipoprotein A-1: implications for a lipid-free molten globular state. Proc Natl Acad Sci USA 1996, 93, 2991–2995.
  • Gursky, O., Atkinson, D. Thermodynamic analysis of human plasma apolipoprotein C-1: high-temperature unfolding and low-temperature oligomer dissociation. Biochemistry 1998, 37, 1283–1291.
  • Atapattu, D.N., Czuprynski, C.J. Mannheimia haemolytica leukotoxin induces apoptosis of bovine lymphoblastoid cells (BL-3) via a caspase-9-dependent mitochondrial pathway. Infect Immun 2005, 73, 5504–5513.
  • Uhlén, P., Laestadius, A., Jahnukainen, T., Söderblom, T., Bäckhed, F., Celsi, G., Brismar, H., Normark, S., Aperia, A., Richter-Dahlfors, A. α-Haemolysin of uropathogenic E. coli induces Ca2+ oscillations in renal epithelial cells. Nature 2000, 405, 694–697.
  • Sun, Y., Clinkenbeard, K.D., Cudd, L.A., Clarke, C.R., Clinkenbeard, P.A. Correlation of Pasteurella haemolytica leukotoxin binding with susceptibility to intoxication of lymphoid cells from various species. Infect Immun 1999, 67, 6264–6269.
  • Hawe, A., Sutter, M., Jiskoot, W. Extrinsic fluorescent dyes as tools for protein characterization. Pharm Res 2008, 25, 1487–1499.
  • St-Laurent, J., Boulay, M.E., Prince, P., Bissonnette, E., Boulet, L.P. Comparison of cell fixation methods of induced sputum specimens: an immunocytochemical analysis. J Immunol Methods 2006, 308, 36–42.
  • Edelhoch, H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 1967, 6, 1948–1954.
  • Leach, S.J., Scheraga, H.A. Ultraviolet difference spectra and the internal structure of proteins. J Biol Chem 1960, 235, 2827–2829.
  • Royer, C.A. Fluorescence spectroscopy. Methods Mol Biol 1995, 40, 65–89.
  • Atapattu, D.N., Albrecht, R.M., McClenahan, D.J., Czuprynski, C.J. Dynamin-2-dependent targeting of Mannheimia haemolytica leukotoxin to mitochondrial cyclophilin D in bovine lymphoblastoid cells. Infect Immun 2008, 76, 5357–5365.
  • Lee, B.C., Choi, S.H., Kim, T.S. Vibrio vulnificus RTX toxin plays an important role in the apoptotic death of human intestinal epithelial cells exposed to Vibrio vulnificus. Microbes Infect 2008, 10, 1504–1513.
  • Satchell, K.J. MARTX, multifunctional autoprocessing repeats-in-toxin toxins. Infect Immun 2007, 75, 5079–5084.
  • Kozjak-Pavlovic, V., Ross, K., Rudel, T. Import of bacterial pathogenicity factors into mitochondria. Curr Opin Microbiol 2008, 11, 9–14.
  • Kelly, S.M., Jess, T.J., Price, N.C. How to study proteins by circular dichroism. Biochim Biophys Acta 2005, 1751, 119–139.
  • Sánchez-Magraner, L., Cortajarena, A.L., García-Pacios, M., Arrondo, J.L., Agirre, J., Guérin, D.M., Goñi, F.M., Ostolaza, H. Interdomain Ca(2+) effects in Escherichia coli α-haemolysin: Ca(2+) binding to the C-terminal domain stabilizes both C- and N-terminal domains. Biochim Biophys Acta 2010, 1798, 1225–1233.
  • Ptitsyn, O.B. How the molten globule became. Trends Biochem Sci 1995, 20, 376–379.
  • Aldick, T., Bielaszewska, M., Uhlin, B.E., Humpf, H.U., Wai, S.N., Karch, H. Vesicular stabilization and activity augmentation of enterohaemorrhagic Escherichia coli haemolysin. Mol Microbiol 2009, 71, 1496–1508.
  • Dolgikh, D.A., Gilmanshin, R.I., Brazhnikov, E.V., Bychkova, V.E., Semisotnov, G.V., Venyaminov, SYu, Ptitsyn, O.B. α-Lactalbumin: compact state with fluctuating tertiary structure? FEBS Lett 1981, 136, 311–315.
  • Veprintsev, D.B., Permyakov, S.E., Permyakov, E.A., Rogov, V.V., Cawthern, K.M., Berliner, L.J. Cooperative thermal transitions of bovine and human apo-α-lactalbumins: evidence for a new intermediate state. FEBS Lett 1997, 412, 625–628.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.