103
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Benidipine persistently inhibits delayed rectifier K+-channel currents in murine thymocytes

, &
Pages 28-33 | Received 04 Jun 2012, Accepted 17 Aug 2012, Published online: 17 Sep 2012

References

  • Braunwald, E. Mechanism of action of calcium-channel-blocking agents. N Engl J Med 1982, 307, 1618–1627.
  • Lee, K.S., Tsien, R.W. Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialysed heart cells. Nature 1983, 302, 790–794.
  • Saida, K., van Breemen, C. Mechanism of Ca++ antagonist-induced vasodilation. Intracellular actions. Circ Res 1983, 52, 137–142.
  • Palamaras, I., Kyriakis, K. Calcium antagonists in dermatology: a review of the evidence and research-based studies. Dermatol Online J 2005, 11, 8.
  • Horváth, M., Mezey, Z., Jósfay, A., Nánay, I., Varsányi, M., Geró, S. The effect of some drugs on in vitro cellular immune reactions and on circulating immune complexes in patients with myocardial infarction. J Investig Allergol Clin Immunol 1991, 1, 404–410.
  • Birx, D.L., Berger, M., Fleisher, T.A. The interference of T cell activation by calcium channel blocking agents. J Immunol 1984, 133, 2904–2909.
  • Bacon, K.B., Westwick, J., Camp, R.D. Potent and specific inhibition of IL-8-, IL-1 alpha- and IL-1 beta-induced in vitro human lymphocyte migration by calcium channel antagonists. Biochem Biophys Res Commun 1989, 165, 349–354.
  • Matsumori, A., Nishio, R., Nose, Y. Calcium channel blockers differentially modulate cytokine production by peripheral blood mononuclear cells. Circ J 2010, 74, 567–571.
  • Liu, W., Matsumori, A. Calcium channel blockers and modulation of innate immunity. Curr Opin Infect Dis 2011, 24, 254–258.
  • Lewis, R.S., Cahalan, M.D. Potassium and calcium channels in lymphocytes. Annu Rev Immunol 1995, 13, 623–653.
  • Matkó, J. K+ channels and T-cell synapses: the molecular background for efficient immunomodulation is shaping up. Trends Pharmacol Sci 2003, 24, 385–389.
  • Chandy, K.G., Wulff, H., Beeton, C., Pennington, M., Gutman, G.A., Cahalan, M.D. K+ channels as targets for specific immunomodulation. Trends Pharmacol Sci 2004, 25, 280–289.
  • Villalonga, N., David, M., Bielanska, J., González, T., Parra, D., Soler, C., Comes, N., Valenzuela, C., Felipe, A. Immunomodulatory effects of diclofenac in leukocytes through the targeting of Kv1.3 voltage-dependent potassium channels. Biochem Pharmacol 2010, 80, 858–866.
  • Kazama, I., Maruyama, Y., Murata, Y. Suppressive effects of nonsteroidal anti-inflammatory drugs diclofenac sodium, salicylate and indomethacin on delayed rectifier K+-channel currents in murine thymocytes. Immunopharmacol Immunotoxicol 2012 (In Press).
  • Furukawa, T., Yamakawa, T., Midera, T., Sagawa, T., Mori, Y., Nukada, T. Selectivities of dihydropyridine derivatives in blocking Ca(2+) channel subtypes expressed in Xenopus oocytes. J Pharmacol Exp Ther 1999, 291, 464–473.
  • Herbette, L.G., Chester, D.W., Rhodes, D.G. Structural analysis of drug molecules in biological membranes. Biophys J 1986, 49, 91–94.
  • Kitakaze, M., Node, K., Minamino, T., Asanuma, H., Kuzuya, T., Hori, M. A Ca channel blocker, benidipine, increases coronary blood flow and attenuates the severity of myocardial ischemia via NO-dependent mechanisms in dogs. J Am Coll Cardiol 1999, 33, 242–249.
  • Yamamoto, M., Gotoh, Y., Imaizumi, Y., Watanabe, M. Mechanisms of long-lasting effects of benidipine on Ca current in guinea-pig ventricular cells. Br J Pharmacol 1990, 100, 669–676.
  • Vater, W., Kroneberg, G., Hoffmeister, F., Saller, H., Meng, K., Oberdorf, A., Puls, W., Schlossmann, K., Stoepel, K. Pharmacology of 4-(2′-nitrophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylic acid dimethyl ester (Nifedipine, BAY a 1040). Arzneimittelforschung 1972, 22, 1–14.
  • Kazama, I., Maruyama, Y., Murata, Y., Sano, M. Voltage-dependent biphasic effects of chloroquine on delayed rectifier K(+)-channel currents in murine thymocytes. J Physiol Sci 2012, 62, 267–274.
  • Grissmer, S., Nguyen, A.N., Aiyar, J., Hanson, D.C., Mather, R.J., Gutman, G.A., Karmilowicz, M.J., Auperin, D.D., Chandy, K.G. Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. Mol Pharmacol 1994, 45, 1227–1234.
  • Kalman, K., Pennington, M.W., Lanigan, M.D., Nguyen, A., Rauer, H., Mahnir, V., Paschetto, K., Kem, W.R., Grissmer, S., Gutman, G.A., Christian, E.P., Cahalan, M.D., Norton, R.S., Chandy, K.G. ShK-Dap22, a potent Kv1.3-specific immunosuppressive polypeptide. J Biol Chem 1998, 273, 32697–32707.
  • Karasawa, A., Kubo, K. Calcium antagonistic effects and the in vitro duration of actions of KW-3049, a new 1,4-dihydropyridine derivative, in isolated canine coronary arteries. Jpn J Pharmacol 1988, 47, 35–44.
  • Price, M., Lee, S.C., Deutsch, C. Charybdotoxin inhibits proliferation and interleukin 2 production in human peripheral blood lymphocytes. Proc Natl Acad Sci USA 1989, 86, 10171–10175.
  • Röbe, R.J., Grissmer, S. Block of the lymphocyte K(+) channel mKv1.3 by the phenylalkylamine verapamil: kinetic aspects of block and disruption of accumulation of block by a single point mutation. Br J Pharmacol 2000, 131, 1275–1284.
  • Rauer, H., Grissmer, S. The effect of deep pore mutations on the action of phenylalkylamines on the Kv1.3 potassium channel. Br J Pharmacol 1999, 127, 1065–1074.
  • DeCoursey, T.E. Mechanism of K+ channel block by verapamil and related compounds in rat alveolar epithelial cells. J Gen Physiol 1995, 106, 745–779.
  • Yellen, G. The moving parts of voltage-gated ion channels. Q Rev Biophys 1998, 31, 239–295.
  • Chester, D.W., Herbette, L.G., Mason, R.P., Joslyn, A.F., Triggle, D.J., Koppel, D.E. Diffusion of dihydropyridine calcium channel antagonists in cardiac sarcolemmal lipid multibilayers. Biophys J 1987, 52, 1021–1030.
  • Young, H.S., Skita, V., Mason, R.P., Herbette, L.G. Molecular basis for the inhibition of 1,4-dihydropyridine calcium channel drugs binding to their receptors by a nonspecific site interaction mechanism. Biophys J 1992, 61, 1244–1255.
  • Fisher, J.L., Levitan, I., Margulies, S.S. Plasma membrane surface increases with tonic stretch of alveolar epithelial cells. Am J Respir Cell Mol Biol 2004, 31, 200–208.
  • Morris, C.E., Homann, U. Cell surface area regulation and membrane tension. J Membr Biol 2001, 179, 79–102.
  • Neher, E., Marty, A. Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci USA 1982, 79, 6712–6716.
  • Maruyama, Y. Selective activation of exocytosis by low concentrations of ACh in rat pancreatic acinar cells. J Physiol (Lond) 1996, 492 (Pt 3), 807–814.
  • Kazama, I., Endo, Y., Toyama, H., Ejima, Y., Kurosawa, S., Murata, Y., Matsubara, M., Maruyama, Y. Compensatory thrombopoietin production from the liver and bone marrow stimulates thrombopoiesis of living rat megakaryocytes in chronic renal failure. Nephron Extra 2011, 1, 147–156.
  • Suzuki, K., Imada, T., Gao, F., Ma, H., Nagata, T. Radioautographic study of benidipine hydrochloride. Localization in the mesenteric artery of spontaneously hypertensive rat. Arzneimittelforschung 1994, 44, 129–133.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.