117
Views
8
CrossRef citations to date
0
Altmetric
Research Article

West Nile virus diagnosis and vaccination: using unique viral peptide sequences to evoke specific immune responses

, , &
Pages 64-70 | Received 19 Jun 2012, Accepted 28 Sep 2012, Published online: 02 Nov 2012

References

  • Murgue, B., Zeller, H., Deubel, V. The ecology and epidemiology of West Nile virus in Africa, Europe and Asia. Curr Top Microbiol Immunol 2002, 267, 195–221.
  • Frost, M.J., Zhang, J., Edmonds, J.H., Prow, N.A., Gu, X., Davis, R., Hornitzky, C., Arzey, K.E., Finlaison, D., Hick, P., Read, A., Hobson-Peters, J., May, F.J., Doggett, S.L., Haniotis, J., Russell, R.C., Hall, R.A., Khromykh, A.A., Kirkland, P.D. Characterization of virulent west nile virus kunjin strain, Australia, 2011. Emerg Infect Dis 2012, 18, 792–800.
  • Murray, K.O., Mertens, E., Despres, P. West Nile virus and its emergence in the United States of America. Vet Res 2010, 41, 67.
  • Hubálek, Z., Halouzka, J. West Nile fever – a reemerging mosquito-borne viral disease in Europe. Emerging Infect Dis 1999, 5, 643–650.
  • Lanciotti, R.S., Roehrig, J.T., Deubel, V., Smith, J., Parker, M., Steele, K., Crise, B., Volpe, K.E., Crabtree, M.B., Scherret, J.H., Hall, R.A., MacKenzie, J.S., Cropp, C.B., Panigrahy, B., Ostlund, E., Schmitt, B., Malkinson, M., Banet, C., Weissman, J., Komar, N., Savage, H.M., Stone, W., McNamara, T., Gubler, D.J. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 1999, 286, 2333–2337.
  • Centers for Disease Control and Prevention. Final 2011 West Nile virus human infections in the United States. Available at: http://www.cdc.gov/ncidod/dvbid/westnile/surv&controlCaseCount11_detailed.htm
  • Bakonyi, T., Hubálek, Z., Rudolf, I., Nowotny, N. Novel flavivirus or new lineage of West Nile virus, central Europe. Emerging Infect Dis 2005, 11, 225–231.
  • Farfan-Ale, J.A., Loroño-Pino, M.A., Garcia-Rejon, J.E., Hovav, E., Powers, A.M., Lin, M., Dorman, K.S., Platt, K.B., Bartholomay, L.C., Soto, V., Beaty, B.J., Lanciotti, R.S., Blitvich, B.J. Detection of RNA from a novel West Nile-like virus and high prevalence of an insect-specific flavivirus in mosquitoes in the Yucatan Peninsula of Mexico. Am J Trop Med Hyg 2009, 80, 85–95.
  • Kleinman, S.H., Williams, J.D., Robertson, G., Caglioti, S., Williams, R.C., Spizman, R., Morgan, L., Tomasulo, P., Busch, M.P. West Nile virus testing experience in 2007: evaluation of different criteria for triggering individual-donation nucleic acid testing. Transfusion 2009, 49, 1160–1170.
  • Francis, R.O., Strauss, D., Williams, J.D., Whaley, S., Shaz, B.H. West Nile virus infection in blood donors in the New York City area during the 2010 seasonal epidemic. Transfusion 2012, doi: 10.1111/j.1537-2995.2012.03639.x.
  • Long, M.T., Gibbs, E.P., Mellencamp, M.W., Bowen, R.A., Seino, K.K., Zhang, S., Beachboard, S.E., Humphrey, P.P. Efficacy, duration, and onset of immunogenicity of a West Nile virus vaccine, live Flavivirus chimera, in horses with a clinical disease challenge model. Equine Vet J 2007, 39, 491–497.
  • Gubler, D.J. Emerging vector-borne flavivirus diseases: are vaccines the solution? Expert Rev Vaccines 2011, 10, 563–565.
  • Beasley, D.W. Vaccines and immunotherapeutics for the prevention and treatment of infections with West Nile virus. Immunotherapy 2011, 3, 269–285.
  • WHO Media Centre. West Nile virus. Fact sheet N°354 July 2011.
  • Wang, T. Role of ?d T cells in West Nile virus-induced encephalitis: friend or foe? J Neuroimmunol 2011, 240–241, 22–27.
  • Kramer, L.D., Styer, L.M., Ebel, G.D. A global perspective on the epidemiology of West Nile virus. Annu Rev Entomol 2008, 53, 61–81.
  • Throsby, M., Ter Meulen, J., Geuijen, C., Goudsmit, J., de Kruif, J. Mapping and analysis of West Nile virus-specific monoclonal antibodies: prospects for vaccine development. Expert Rev Vaccines 2007, 6, 183–191.
  • Coban, C., Kobiyama, K., Aoshi, T., Takeshita, F., Horii, T., Akira, S., Ishii, K.J. Novel strategies to improve DNA vaccine immunogenicity. Curr Gene Ther 2011, 11, 479–484.
  • Rossi, S.L., Ross, T.M., Evans, J.D. West Nile virus. Clin Lab Med 2010, 30, 47–65.
  • Kanduc, D. Immunogenicity in peptide-immunotherapy: from self/nonself to similar/dissimilar sequences. Adv Exp Med Biol 2008, 640, 198–207.
  • Kanduc, D. “Self-nonself” peptides in the design of vaccines. Curr Pharm Des 2009, 15, 3283–3289.
  • Kanduc, D. Protein information content resides in rare peptide segments. Peptides 2010, 31, 983–988.
  • Kanduc, D. The self/nonself issue: A confrontation between proteomes. Self Nonself 2010, 1, 255–258.
  • Kanduc, D. Homology, similarity, and identity in peptide epitope immunodefinition. J Pept Sci 2012, 18, 487–494.
  • Kanduc, D. Peptide cross-reactivity: the original sin of vaccines. Front Biosci (Schol Ed) 2012, 4, 1393–1401.
  • Overwijk, W.W., Restifo, N.P. Autoimmunity and the immunotherapy of cancer: targeting the “self” to destroy the “other”. Crit Rev Immunol 2000, 20, 433–450.
  • Dudley, M.E., Wunderlich, J.R., Robbins, P.F., Yang, J.C., Hwu, P., Schwartzentruber, D.J., Topalian, S.L., Sherry, R., Restifo, N.P., Hubicki, A.M., Robinson, M.R., Raffeld, M., Duray, P., Seipp, C.A., Rogers-Freezer, L., Morton, K.E., Mavroukakis, S.A., White, D.E., Rosenberg, S.A. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002, 298, 850–854.
  • Phan, G.Q., Yang, J.C., Sherry, R.M., Hwu, P., Topalian, S.L., Schwartzentruber, D.J., Restifo, N.P., Haworth, L.R., Seipp, C.A., Freezer, L.J., Morton, K.E., Mavroukakis, S.A., Duray, P.H., Steinberg, S.M., Allison, J.P., Davis, T.A., Rosenberg, S.A. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA 2003, 100, 8372–8377.
  • Koon, H., Atkins, M. Autoimmunity and immunotherapy for cancer. N Engl J Med 2006, 354, 758–760.
  • Mandavilli, A. When the vaccine causes disease. Nat Med 2007, 13, 274.
  • Caspi, R.R. Immunotherapy of autoimmunity and cancer: the penalty for success. Nat Rev Immunol 2008, 8, 970–976.
  • Higgins, J.P., Bernstein, M.B., Hodge, J.W. Enhancing immune responses to tumor-associated antigens. Cancer Biol Ther 2009, 8, 1440–1449.
  • Fernandes, R.C., Medina-Acosta, E. Disseminated BCG disease and the full contraindication to BCG vaccination for children exposed to and/or infected by HIV. Int J Tuberc Lung Dis 2009, 13, 1188–9; author reply 1189.
  • Amos, S.M., Duong, C.P., Westwood, J.A., Ritchie, D.S., Junghans, R.P., Darcy, P.K., Kershaw, M.H. Autoimmunity associated with immunotherapy of cancer. Blood 2011, 118, 499–509.
  • Toplak, N., Avcin, T. Influenza and autoimmunity. Ann N Y Acad Sci 2009, 1173, 619–626.
  • de Carvalho, J.F., Pereira, R.M., Shoenfeld, Y. The mosaic of autoimmunity: the role of environmental factors. Front Biosci (Elite Ed) 2009, 1, 501–509.
  • Jacob, J.B., Kong, Y.C., Nalbantoglu, I., Snower, D.P., Wei, W.Z. Tumor regression following DNA vaccination and regulatory T cell depletion in neu transgenic mice leads to an increased risk for autoimmunity. J Immunol 2009, 182, 5873–5881.
  • Kong, Y.C., Jacob, J.B., Flynn, J.C., Elliott, B.E., Wei, W.Z. Autoimmune thyroiditis as an indicator of autoimmune sequelae during cancer immunotherapy. Autoimmun Rev 2009, 9, 28–33.
  • De Filette, M., Ulbert, S., Diamond, M., Sanders, N.N. Recent progress in West Nile virus diagnosis and vaccination. Vet Res 2012, 43, 16.
  • Vita, R., Zarebski, L., Greenbaum, J.A., Emami, H., Hoof, I., Salimi, N., Damle, R., Sette, A., Peters, B. The immune epitope database 2.0. Nucleic Acids Res 2010, 38, D854–D862.
  • Yamshchikov, V.F., Wengler, G., Perelygin, A.A., Brinton, M.A., Compans, R.W. An infectious clone of the West Nile flavivirus. Virology 2001, 281, 294–304.
  • Landsteiner, K., van der Scheer, J. On the serological specificity of peptides. III. J Exp Med 1939, 69, 705–719.
  • Lucchese, G., Stufano, A., Trost, B., Kusalik, A., Kanduc, D. Peptidology: short amino acid modules in cell biology and immunology. Amino Acids 2007, 33, 703–707.
  • Wu, C.H., Yeh, L.S., Huang, H., Arminski, L., Castro-Alvear, J., Chen, Y., Hu, Z., Kourtesis, P., Ledley, R.S., Suzek, B.E., Vinayaka, C.R., Zhang, J., Barker, W.C. The Protein Information Resource. Nucleic Acids Res 2003, 31, 345–347.
  • Thompson, J.D., Higgins, D.G., Gibson, T.J. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22, 4673–4680.
  • Capone, G., Pagoni, M., Pesce Delfino, A., Kanduc, D. Evidence for a vast peptide overlap between West Nile virus and human proteomes. J Basic Microbiol 2012, doi: 10.1002/jobm.201200204.
  • Yang, J.B., Duy Mai, D., LaFond, R.E., Gates, T.J., James, E.A., Malhotra, U., Kwok, W.W. H1N1 Influenza, H9N2 Influenza, Yellow Fever Virus, and West Nile Virus Specific CD4+ T cells epitopes restricted by various DR alleles.IEDB 1021695. 2011.
  • Larsen, M.V., Lelic, A., Parsons, R., Nielsen, M., Hoof, I., Lamberth, K., Loeb, M.B., Buus, S., Bramson, J., Lund, O. Identification of CD8+ T cell epitopes in the West Nile virus polyprotein by reverse-immunology using NetCTL. PLoS ONE 2010, 5, e12697.
  • Kanai, R., Kar, K., Anthony, K., Gould, L.H., Ledizet, M., Fikrig, E., Marasco, W.A., Koski, R.A., Modis, Y. Crystal structure of west nile virus envelope glycoprotein reveals viral surface epitopes. J Virol 2006, 80, 11000–11008.
  • Herrmann, S., Leshem, B., Lobel, L., Bin, H., Mendelson, E., Ben-Nathan, D., Dussart, P., Porgador, A., Rager-Zisman, B., Marks, R.S. T7 phage display of Ep15 peptide for the detection of WNV IgG. J Virol Methods 2007, 141, 133–140.
  • Parsons, R., Lelic, A., Hayes, L., Carter, A., Marshall, L., Evelegh, C., Drebot, M., Andonova, M., McMurtrey, C., Hildebrand, W., Loeb, M.B., Bramson, J.L. The memory T cell response to West Nile virus in symptomatic humans following natural infection is not influenced by age and is dominated by a restricted set of CD8+ T cell epitopes. J Immunol 2008, 181, 1563–1572.
  • Kaufmann, B., Vogt, M.R., Goudsmit, J., Holdaway, H.A., Aksyuk, A.A., Chipman, P.R., Kuhn, R.J., Diamond, M.S., Rossmann, M.G. Neutralization of West Nile virus by cross-linking of its surface proteins with Fab fragments of the human monoclonal antibody CR4354. Proc Natl Acad Sci USA 2010, 107, 18950–18955.
  • Gangwar, R.S., Shil, P., Sapkal, G.N., Khan, S.A., Gore, M.M. Induction of virus-specific neutralizing immune response against West Nile and Japanese encephalitis viruses by chimeric peptides representing T-helper and B-cell epitopes. Virus Res 2012, 163, 40–50.
  • Mansfield, K.L., Horton, D.L., Johnson, N., Li, L., Barrett, A.D., Smith, D.J., Galbraith, S.E., Solomon, T., Fooks, A.R. Flavivirus-induced antibody cross-reactivity. J Gen Virol 2011, 92, 2821–2829.
  • Papa, A., Karabaxoglou, D., Kansouzidou, A. Acute West Nile virus neuroinvasive infections: cross-reactivity with dengue virus and tick-borne encephalitis virus. J Med Virol 2011, 83, 1861–1865.
  • Hirota, J., Nishi, H., Matsuda, H., Tsunemitsu, H., Shimiz, S. Cross-reactivity of Japanese encephalitis virus-vaccinated horse sera in serodiagnosis of West Nile virus. J Vet Med Sci 2010, 72, 369–372.
  • Kitai, Y., Kondo, T., Konishi, E. Complement-dependent cytotoxicity assay for differentiating West Nile virus from Japanese encephalitis virus infections in horses. Clin Vaccine Immunol 2010, 17, 875–878.
  • Dauphin, G., Zientara, S. West Nile virus: recent trends in diagnosis and vaccine development. Vaccine 2007, 25, 5563–5576.
  • Sant’Angelo, D.B., Robinson, E., Janeway, C.A. Jr, Denzin, L.K. Recognition of core and flanking amino acids of MHC class II-bound peptides by the T cell receptor. Eur J Immunol 2002, 32, 2510–2520.
  • Schuler, M.M., Nastke, M.D., Stevanovikc, S. SYFPEITHI: database for searching and T-cell epitope prediction. Methods Mol Biol 2007, 409, 75–93.
  • Rothbard, J.B. Peptides and the cellular immune response. Ann Inst Pasteur 1986, 137E, 518–526.
  • Rothbard, J.B., Taylor, W.R. A sequence pattern common to T cell epitopes. EMBO J 1988, 7, 93–100.
  • Mathews, J.H., Allan, J.E., Roehrig, J.T., Brubaker, J.R., Uren, M.F., Hunt, A.R. T-helper cell and associated antibody response to synthetic peptides of the E glycoprotein of Murray Valley encephalitis virus. J Virol 1991, 65, 5141–5148.
  • Rothbard, J.B., Gefter, M.L. Interactions between immunogenic peptides and MHC proteins. Annu Rev Immunol 1991, 9, 527–565.
  • Rothbard, J.B., Pemberton, R.M., Bodmer, H.C., Askonas, B.A., Taylor, W.R. Identification of residues necessary for clonally specific recognition of a cytotoxic T cell determinant. EMBO J 1989, 8, 2321–2328.
  • Tiwari, R., Geliebter, J., Lucchese, A., Mittelman, A., Kanduc, D. Computational peptide dissection of Melan-a/MART-1 oncoprotein antigenicity. Peptides 2004, 25, 1865–1871.
  • Lucchese, G., Stufano, A., Kanduc, D. Proposing low-similarity peptide vaccines against Mycobacterium tuberculosis. J Biomed Biotechnol 2010, 2010, 832341.
  • Reddehase, M.J., Rothbard, J.B., Koszinowski, U.H. A pentapeptide as minimal antigenic determinant for MHC class I-restricted T lymphocytes. Nature 1989, 337, 651–653.
  • Hemmer, B., Kondo, T., Gran, B., Pinilla, C., Cortese, I., Pascal, J., Tzou, A., McFarland, H.F., Houghten, R., Martin, R. Minimal peptide length requirements for CD4(+) T cell clones–implications for molecular mimicry and T cell survival. Int Immunol 2000, 12, 375–383.
  • Bisanzio, D., Giacobini, M., Bertolotti, L., Mosca, A., Balbo, L., Kitron, U., Vazquez-Prokopec, G.M. Spatio-temporal patterns of distribution of West Nile virus vectors in eastern Piedmont Region, Italy. Parasit Vectors 2011, 4, 230.
  • García-Bocanegra, I., Jaén-Téllez, J.A., Napp, S., Arenas-Montes, A., Fernández-Morente, M., Fernández-Molera, V., Arenas, A. West Nile fever outbreak in horses and humans, Spain, 2010. Emerg Infect Dis 2011, 17, 2397–2399.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.