7
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Inhibition of Lymphocyte-Mediated Cytolysis and Cyclic amp Phosphodiesterase by Erythro-9–(2-Hydroxy-3-Nonyl)Adenine

, , , &
Pages 79-100 | Published online: 28 Sep 2008

References

  • Schaeffer H. J., Schwender C. F. Enzyme inhibitors. 26. Bridging hydrophobic and hydrophilic regions on adenosine deaminase with some 9-(2-hydroxy-3-alkyl)adenines. J. Med. Chem. 1974; 17: 6
  • Glazer R. I. Adenosine deaminase inhibitors: Their role in chemotherapy and immunosuppression. Cancer Chemother. Pharmacol. 1980; 4: 227
  • Shannon W. M., Schabel F. M., Jr. Antiviral agents as adjuncts in cancer chemotherapy. Pharmac. Ther. 1980; 11: 263
  • Lum C. T., Sutherland D. E.R., Najarian J. S. Inhibition for immunosuppression. N. Engl. J. Med. 1977; 296: 819
  • Lum C. T., Sutherland D. E.R., Payne W. D., Gorecki P., Matas A. J., Najarian J. S. Prolongation of mouse and rat pancreatic islet cell allografts by adenosine deaminase inhibitors and adenine arabinoside. J. Surg. Res. 1980; 28: 44
  • Adamson R. H., Chassin M. M., Chirigos M. A., Johns D. G. Modes of Action: Some aspects of the pharmacology of the adenosine deaminase inhibitors 2′-deoxycoformycin and erythro-9-(2-hydroxy-3-nonyl)adenine. in Current Chemotherapy. Proc. of 10th International Congress of Chemotherapy, W. Siegenthaler, R. Luthy. American Society for Microbiology, Washington, DC 1978; Vol. 11: 1116
  • North T. W., Cohen S. S. Erythro-9-(2-hydroxy-3-nonyl)-adenine as a specific inhibitor of herpes simplex virus replication in the presence and absence of adenosine analogues. Proc. Natl. Acad. Sci. 1978; 75: 4684
  • Shannon W. M., Arnett G., Schabel F. M., Jr., North T. W., Cohen S. S. Erythro-9-(2-hydroxy-3-nonyl)adenine alone and in combination with 9–β-D-arabinofuranosyladenine in treatment of systemic herpesvirus infections in mice. Antimicrob. Agents Chemother. 1980; 18: 598
  • Carson D. A., Seegmiller J. E. Effect of adenosine deaminase inhibition upon human lymphocyte blastogenesis. J. Clin. Invest. 1976; 57: 274
  • Hirschhorn R., Sela E. Adenosine deaminase and immunodeficiency: An in vitro model. Cell. Immunol. 1977; 32: 350
  • Lum C. T., Sutherland D. E., Najarian J. S. Inhibition of PHA and NaIO4 mitogenesis by the adenosine deaminase inhibitors erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) and 2′-deoxycoformycin (2-dCF). Clin. Immunol. and Immunopath. 1979; 12: 453
  • Ballow M., Pantschenko A. Effect of ADA inhibitors on murine lymphocyte subpopulations. Fed. Proc. Fed. Am. Soc. Exp. Biol. 1981; 40: 1081
  • Fischer D., Van der Weyden M. B., Snyderman R., Kelley W. N. A role for adenosine deaminase in human monocyte maturation. J. Clin. Invest. 1976; 58: 399
  • Lum C. T., Schmidtke J. R., Sutherland D. E., Najarian J. S. Inhibition of human T-cell rosette formation by the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl)adenine hydrochloride (EHNA). Clin. Immunol. and Immunopath. 1978; 10: 258
  • Meisel A. D., Natarajan C., Diamond H. S. Effect of adenosine deaminase inhibitors on leucocyte chemotaxis. Clin. Res. 1978; 26: 25A
  • Duncan G. S., Wolberg G., Zimmerman T. P., Elion G. B. Evidence for a second site of action of erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) in mouse cytolytic lymphocytes. Fed. Proc. Fed. Am. Soc. Exp. Biol. 1979; 38: 1098
  • Zuckerman S. H., Kay N. E., Douglas S. D. Effect of adenosine deaminase inhibitors on Fcμ receptor expression in human T-cell culture. Cell. Immunol. 1980; 56: 112
  • Morita Y., Chiang P. K., Siraganian R. P. Effect of inhibitors of transmethylation on histamine release from human basophils. Biochem. Pharmacol. 1981; 30: 785
  • Bouchard P., Penningroth S. M., Cheung A., Gagnon C., Bardin C. W. Erythro-9-[3-(2-hydroxynonyl)]adenine is an inhibitor of sperm motility that blocks dynein ATPase and protein carboxymethylase activities. Proc. Natl. Acad. Sci. 1981; 78: 1033
  • Kaplan A. M., Squire C., Gerrard T. L. Effects of adenosine deaminase inhibitors on induction and mediation of cellular cytotoxicity. Fed. Proc. Fed. Am. Soc. Exp. Biol. 1981; 40: 988
  • Green R. D. Effects of exogenous adenosine deaminase and erythro-9-(2-hydroxy-3-nonyl)adenine on intracellular cyclic AMP levels in C1300 murine neuroblastoma in tissue culture. Life Sci. 1980; 26: 399
  • Henderson J. F., Brox L., Zombor G., Hunting D., Lomax C. A. Specificity of adenosine deaminase inhibitors. Biochem. Pharmacol. 1967/1977; 26
  • Skupp S., Vugrek G., Ayvazian J. H. Effect of erythro-9-(2-hydroxy-3-nonyl)adenine on purine and pyrimidine metabolism in the human peripheral lymphocyte during the early phases of phytohemagglutinin-mediated blastogenesis. Biochem. Pharmacol. 1979; 28: 3323
  • Lewis A. S. Rabbit brain purine nucleoside phosphorylase: Physical and chemical properties. Inhibition studies with aminopterin, folic acid, and structurally related compounds. Arch. Biochem. Biophys. 1978; 190: 662
  • Lin A. L., Elford H. L. Inhibition of adenosine deaminase activity and ribonucleotide reductase levels in Hela cells. Fed. Proc. Fed. Am. Soc. Exp. Biol. 1979; 38: 496
  • Zimmerman T. P., Rideout J. L., Wolberg G., Duncan G. S., Elion G. B. 2-Fluoroadenosine 3′:5′-monophosphate: A metabolite of 2-fluoroadenosine in mouse cytotoxic lymphocytes. J. Biol. Chem. 1976; 251: 6757
  • Zimmerman TP., Deeprose R. D., Wolberg G., Duncan G. S. Potentiation by homocysteine of adenosine-stimulated elevation of cellular adenosine 3′.5′-monophosphate. Biochem. Pharmacol. 1979; 28: 2375
  • Zimmerman T. P., Schmitges C. J., Wolberg G., Deeprose R. D., Duncan G. S., Cuatrecasas P., Elion G. B. Modulation of cyclic AMP metabolism by S-adenosylhomocysteine and S-3-deazaadenosylhomocysteine in mouse lymphocytes. Proc. Natl. Acad. Sci. 1980; 77: 5639
  • Wolberg G., Hiemstra K., Burge J. J., Singler R. C. Reversible inhibition of lymphocyte-mediated cytolysis by dimethyl sulfoxide (DMSO). J. Immunol. 1973; 111: 1435
  • Zimmerman T. P., Wolberg G., Duncan G. S. Inhibition of lymphocyte-mediated cytolysis by 3-deazaadenosine: Evidence for a methylation reaction essential to cytolysis. Proc. Natl. Acad. Sci. 1978; 75: 6220
  • Van Haverbeke D. A., Brown P. R. Optimization of a procedure for extraction of nucleotides from plasma and erythrocytes prior to HPLC analysis. J. Liq. Chromatogr. 1978; 1: 507
  • O'Dea R. F., Viveros O. H., Axelrod J., Aswani kumar S., Schiffmann E., Corcoran B. A. Rapid stimulation of protein carboxymethylation in leukocytes by a chemo-tactic peptide. Nature 1978; 272: 462
  • Matsumoto S. S., Raivio K. O., Seegmiller J. E. Adenine nucleotide degradation during energy depletion in human lymphoblasts. J. Biol. Chem. 1979; 254: 8956
  • Whisnant C. C., Singer K. H., Amos D. B. Interaction of cytotoxic T lymphocytes with target cells. I. Specific inhibition by detergent-solubilized, partially purified mouse histocompatibility antigens. J. Immunol. 1978; 121: 2253
  • Wolberg G., Zimmerman T. P., Hiemstra K., Winston M., Chu L. C. Adenosine inhibition of lymphocyte-mediated cytolysis: Possible role of cyclic adenosine monophosphate. Science 1975; 187: 957
  • Martz E. Early steps in specific tumor cell lysis by sensitized mouse T lymphocytes: I. Resolution and characterization. J. Immunol. 1975; 115: 261
  • Berke G., Sullivan K. A., Amos B. Rejection of ascites tumor allografts. II. A pathway for cell-mediated tumor destruction in vitro by peritoneal exudate lymphoid cells. J. Exp. Med. 1972; 136: 1594
  • Borchardt R. T. S-Adenosyl-L-methionine-dependent macromolecule methyltransferases: Potential targets for the design of chemotherapeutic agents. J. Med. Chem. 1980; 23: 347
  • Zimmerman T. P., Schmitges C. J., Wolberg G., Deeprose R. D., Duncan G. S. Inhibition of cyclic AMP phosphodiesterase by 5′-deoxy-5′-S-isobutylthioadenosine at biologically active concentrations of drug. Life Sciences 1981; 28: 647
  • Wolberg G., Zimmerman T. P., Duncan G. S., Singer K. H., Elion G. B. Inhibition of lymphocyte-mediated cytolysis by adenosine analogs: Biochemical studies concerning mechanism of action. Biochem. Pharmacol. 1978; 27: 1487
  • Atkinson J. P., Wedner H. J., Parker C. W. Two novel stimuli of cyclic adenosine 3′,5′-monophosphate (cAMP) in human lymphocytes. J. Immunol. 1975; 115: 1023
  • Virji M., Stevenson G. T. Antibody-induced changes in levels of cyclic adenosine monophosphate in leukaemic lymphocytes. Br. J. Cancer 1979; 39: 434
  • Krishnaraj R., Talwar G. P. Role of cyclic AMP in mitogen induced transformation of human peripheral leukocytes. J. Immunol. 1973; 111: 1010
  • Lyle L. R., Parker C. W. Cyclic adenosine 3′,5′-mono-phosphate responses to concanavalin A in human lymphocytes. Evidence that the response involves specific carbohydrate receptors on the cell surface. Biochemistry 1974; 13: 5415
  • Jackowski S., Sha'afi R.I. Response of adenosine cyclic 3′,5′-monophosphate level in rabbit neutrophils to the chemotactic peptide formyl-methionyl-leucyl-phenyl-alanine. Mol. Pharmacol. 1979; 16: 473
  • Smolen J. E., Korchak H. M., Weissmann G. Increased levels of cyclic adenosine-3′,5′-monophosphate in human polymorphonuclear leukocytes after surface stimulation. J. Clin. Invest. 1980; 65: 1077
  • Sullivan T. J., Parker K. L., Kulczycki A., Jr., Parker C. W. Modulation of cyclic AMP in purified rat mast cells. III. Studies on the effects of concanavalin A and anti-IgE on cyclic AMP concentrations during histamine release. J. Immunol. 1976; 117: 713
  • Holgate S. T., Lewis R. A., Austen K. F. The role of cyclic nucleotides in mast cell activation and secretion, in Progress in Immunology IV. Fourth International Congress of Immunology, M. Fougereau, J. Dausset. Academic Press, London 1980; 846
  • Berke G. Interaction of cytotoxic T lymphocytes and target cells. Prog. Allergy 1980; 27: 69
  • Zimmerman T. P., Wolberg G., Duncan G. S. Metabolism of tubercidin and formycin to their 3′:5′-cyclic nucleotides in mammalian cells. J. Biol. Chem. 1978; 253: 8792

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.