826
Views
60
CrossRef citations to date
0
Altmetric
INVITED REVIEW

The Rabbit as Experimental Model for Research in Implant Dentistry and Related Tissue Regeneration

, DDS, PHD & , DDS, PHD
Pages 266-282 | Received 20 Sep 2012, Accepted 11 Feb 2013, Published online: 25 Apr 2013

REFERENCES

  • Natiella JR. The use of animal models in research on dental implants. J Dent Educ. 1988;52:792–797
  • Pearce A, Richards R, Milz S, Animal models for implant biomaterial research in bone: a review. Eur Cell Mater. 2007;13:1–10.
  • Gilsanz V, Roe TF, Gibbens DT, Effect of sex steroids on peak bone density of growing rabbits. Am J Physiol. 1988;255:416–421.
  • Fox RR. The rabbit as a research subject. Physiologist. 1984;27:393–402.
  • Okerman L. General background. In: Diseases of Domestic Rabbits. Oxford: Blackwell; 1989:4–8.
  • American Rabbit Breeders Association. ARBA Recognized Breeds. 2011. Available at http://www.arba.net/ breeds.htm.
  • Brewer NR. Biology of the rabbit. J Am Assoc Lab Anim Sci. 2006;45:8–24.
  • Yanni AE. The laboratory rabbit: an animal model of atherosclerosis research. Lab Anim. 2004;38:246–256.
  • Qi M, Hu J, Li J, Effect of zoledronate acid treatment on osseointegration and fixation of implants in autologous iliac bone grafts in ovariectomized rabbits. Bone 2012;50:119–127.
  • Fujimoto T, Niimi A, Sawai T, Effects of steroid-induced osteoporosis on osseointegration of titanium implants. Int J Oral Maxillofac Implants. 1998;13:183–189.
  • Vidigal GM Jr, Crispino AF, Groisman M, Histomorphometric analysis of HA-coated implants interface with irradiated and nonirradiated bone. Implant Dent. 2008;17:414–421.
  • Carvas JS, Pereira RM, Caparbo VF, A single dose of zoledronic acid reverses the deleterious effects of glucocorticoids on titanium implant osseointegration. Osteoporos Int. 2010;21:1723–1729.
  • Yildiz A, Esen E, Kürkçü M, Effect of zoledronic acid on osseointegration of titanium implants: an experimental study in an ovariectomized rabbit model. J Oral Maxillofac Surg. 2010;68:515–523.
  • Sawin PB. Morphogenetic studies of the rabbit; regional specificity of hereditary factors affecting homoeotic variations in the axial skeleton. J Exp Zool. 1945;100:301–329.
  • Sawin PB, Crary DD. Genetics of skeletal deformities in the domestic rabbit (Oryctolagus cuniculus). Clin Orthop Relat Res. 1964;33:71–90.
  • Sawin PB, Ranlett M, Crary DD. Morphogenetic studies of the rabbit. XXIX. Accessory ossification centers at the occipitovertebral articulation of the dachs (chondrodystrophy) rabbit. Am J Anat. 1962;111:239–257.
  • Crary DD, Sawin PB. Morphogenetic studies in the rabbit. VI. Genetic factors influencing the ossification pattern of the limbs. Genetics 1949;34:508–523.
  • Crary DD, Sawin PB. Genetic differences in the ossification pattern of the rabbit. Anat Rec. 1947;97:327.
  • Neyt JG, Buckwalter JA, Carroll NC. Use of animal models in musculoskeletal research. Iowa Orthop J. 1998;18:118–123.
  • Gilsanz V, Roe TF, Gibbens DT, Effect of sex steroids on peak bone density of growing rabbits. Am J Physiol. 1988;255:416–421.
  • Wang X, Mabrey JD, Agrawal CM. An interspecies comparison of bone fracture properties. Biomed Mater Eng. 1998;8:1–9.
  • Martiniaková M, Omelka R, Chrenek P. Compact bone structure of unmodified and genetically modified rabbits. Slovak J Anim Sci. 2010;43:166–171.
  • Martiniaková M, Vondráková M, Fabiš M. Investigation of the microscopic structure of rabbit compact bone tissue. Scripta Medica. 2003;76:215–220.
  • Martiniaková M, Grosskopf B, Omelka R, Histological study of compact bone tissue in some mammals: a method for species determination. Int J Osteoarch. 2007;17:82–90.
  • Martiniaková M, Grosskopf B, Omelka R, Differences among species in compact bone tissue microstructure of mammalian skeleton: use of a discriminant function analysis for species identification. J Forensic Sci. 2006;51:1235–1239.
  • Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2008;3:131–139.
  • Luk SC, Nopajaroonsri C, Simon GT. The ultrastructure of cortical bone in young adult rabbits. J Ultrastruct Res. 1974;46:184–205.
  • Garn SM, Rohmann CG, Wagner B, Population similarities in the onset and rate of adult endosteal bone loss. Clin Orthop Relat Res. 1969;65:51–60.
  • Stoker NG, Epker BN. Age changes in endosteal bone remodeling and balance in the rabbit. J Dent Res. 1971;50:1570–1574.
  • Gothman L. The normal arterial pattern of the rabbit's tibia. A microangiographic study. Acta Chir Scand. 1960;120:201–210.
  • Aurlick N, Murnane TW, Doku HC. Microangiographic studies of experimental mandibular fractures in rabbits. J Oral Surg. 1971;29:180–186.
  • Wong RW, Rabie AB. A quantitative assessment of the healing of intramembranous and endochondral autogenous bone grafts. Eur J Orthod. 1999;21:119–126.
  • Smith JD, Abramson M. Membranous vs endochondrial bone autografts. Arch Otolaryngol. 1974;99:203–205.
  • Epker BN, Frost HM. A histological study of remodeling at the periosteal, haversian canal, cortical endosteal, and trabecular endosteal surfaces in human rib. Anat Rec. 1965;152:129–135.
  • Najjar TA, Kahn D. Comparative study of healing and remodeling in various bones. J Oral Surg. 1977;35:375–379.
  • Fanghänel J, Gedrange T, Proff P. Bone quality, quantity and metabolism in terms of dental implantation. Biomed Tech (Berl). 2008;53:215–219.
  • Hollinger JO, Kleinschmidt JC. The critical size defect as an experimental model to test bone repair materials. J Craniofac Surg. 1990;1:60–68.
  • Hollinger JO, Schmitz JP, Mizgala JW, An evaluation of two configurations of tricalcium phosphate for treating craniotomies. J Biomed Mater Res. 1989;23:17–29.
  • Kahnberg KE. Restoration of mandibular jaw defects in the rabbit by subperiosteally implanted Teflon mantle leaf. Int J Oral Surg. 1979;8:449–456.
  • Chai BF, Tang XM. Ultrastructural investigation of experimental non-union of fractures. A transmission electron microscopic study. Chin Med J (Engl). 1986;99:207–214.
  • International Standard ISO 10993-6. Biological evaluation of medical devices—Part 6. 1994: 1–11.
  • Nkenke E, Stelzle F. Clinical outcomes of sinus floor augmentation for implant placement using autogenous bone or bone substitutes: a systematic review. Clin Oral Implants Res. 2009;4:124–133.
  • Wallace SS, Froum SJ. Effect of maxillary sinus augmentation on the survival of endosseous dental implants. A systematic review. Ann Periodontol. 2003;8:328–343.
  • Esposito M, Grusovin MG, Rees J, Effectiveness of sinus lift procedures for dental implant rehabilitation: a Cochrane systematic review. Eur J Oral Implantol. 2010;3:7–26.
  • Jensen T, Schou S, Stavropoulos A, Maxillary sinus floor augmentation with Bio-Oss or Bio-Oss mixed with autogenous bone as graft in animals: a systematic review. Int J Oral Maxillofac Surg. 2012;41:114–120.
  • Gutwald R, Haberstroh J, Stricker A, Influence of rhBMP-2 on bone formation and osseointegration in different implant systems after sinus-floor elevation. An in vivo study on sheep. J Craniomaxillofac Surg. 2010;38:571–579.
  • Fürst G, Gruber R, Tangl S, Sinus grafting with autogenous platelet-rich plasma and bovine hydroxyapatite. A histomorphometric study in minipigs. Clin Oral Implants Res. 2003;14:500–508.
  • Fenner M, Vairaktaris E, Fischer K, Influence of residual alveolar bone height on osseointegration of implants in the maxilla: a pilot study. Clin Oral Implants Res. 2009;20: 555–559.
  • Haas R, Baron M, Zechner W, Mailath-Pokorny G. Porous hydroxyapatite for grafting the maxillary sinus in sheep: comparative pullout study of dental implants. Int J Oral Maxillofac Implants. 2003;18:691–696.
  • Marukawa K, Ueki K, Okabe K, Use of self-setting α-tricalcium phosphate for maxillary sinus augmentation in rabbit. Clin Oral Implants Res. 2011;22:606–612.
  • Sun XJ, Xia LG, Chou LL, Maxillary sinus floor elevation using a tissue engineered bone complex with BMP-2 gene modified bMSCs and a novel porous ceramic scaffold in rabbits. Arch Oral Biol. 2010;55:195–202.
  • Lambert F, Léonard A, Drion P, Influence of space-filling materials in subantral bone augmentation: blood clot vs. autogenous bone chips vs. bovine hydroxyapatite. Clin Oral Implants Res. 2011;22:538–545.
  • Watanabe K, Niimi A, Ueda M. Autogenous bone grafts in the rabbit maxillary sinus. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;88:26–32.
  • Choi BH, Kim BY, Huh JY, Cyanoacrylate adhesive for closing sinus membrane perforations during sinus lifts. J Craniomaxillofac Surg. 2006;34:505–509.
  • Scharf KE, Lawson W, Shapiro JM, Gannon PJ. Pressure measurements in the normal and occluded rabbit maxillary sinus. Laryngoscope 1995;105:570–574.
  • Xu H, Shimizu Y, Ooya K. Histomorphometric study of the stability of newly formed bone after elevation of the floor of the maxillary sinus. Br J Oral Maxillofac Surg. 2005;43:493–499.
  • Asai S, Shimizu Y, Ooya K. Maxillary sinus augmentation model in rabbits: effect of occluded nasal ostium on new bone formation. Clin Oral Implants Res. 2002;13:405–409.
  • Xu H, Shimizu Y, Asai S, Ooya K. Grafting of deproteinized bone particles inhibits bone resorption after maxillary sinus floor elevation. Clin Oral Implants Res. 2004;15:126–133.
  • Xu H, Shimizu Y, Asai S, Ooya K. Experimental sinus grafting with the use of deproteinized bone particles of different sizes. Clin Oral Implants Res. 2003;14: 548–555.
  • Riecke B, Heiland M, Hothan A, Primary implant stability after maxillary sinus augmentation with autogenous mesenchymal stem cells: a biomechanical evaluation in rabbits. Clin Oral Implants Res. 2011;22:1242–1246.
  • Rahmani M, Shimada E, Rokni S, Osteotome sinus elevation and simultaneous placement of porous-surfaced dental implants: a morphometric study in rabbits. Clin Oral Implants Res. 2005;16:692–699.
  • Oortgiesen DA, Meijer GJ, Bronckers AL, Fenestration defects in the rabbit jaw: an inadequate model for studying periodontal regeneration. Tissue Eng Part C Methods. 2010;16:133–140.
  • Munhoz EA, Bodanezi A, Cestari TM, Long-term rabbits bone response to titanium implants in the presence of inorganic bovine-derived graft. J Biomater Appl. 2011. DOI: 10.1177/0885328210396946.
  • Munhoz EA, Bodanezi A, Cestari TM, Biomechanical and microscopic response of bone to titanium implants in the presence of inorganic grafts. J Oral Implantol. 2011;37:19–25.
  • Freilich M, Shafer D, Wei M, Implant system for guiding a new layer of bone. Computed microtomography and histomorphometric analysis in the rabbit mandible. Clin Oral Implants Res. 2009;20:201–207.
  • Cordioli G, Atiyeh F, Piattelli A, Majzoub Z. Healing of transplanted composite bone grafts-implants: a pilot animal study. Clin Oral Implants Res. 2003;14:750–758.
  • Salata LZ, Rasmusson L, Kahnberg KE. Effects of a mechanical barrier on the integration of cortical onlay bone grafts placed simultaneously with endosseous implant. Clin Implant Dent Relat Res. 2002;4:60–8.
  • Sawai T, Niimi A, Johansson CB, The effect of hyperbaric oxygen treatment on bone tissue reactions to c.p. titanium implants placed in free autogenous bone grafts. A histomorphometric study in the rabbit mandible. Clin Oral Implants Res. 1998;9:384–397.
  • Yoshimoto M, König B Jr, Allegrini S Jr, Bone healing after the inferior alveolar nerve lateralization: a histologic study in rabbits (Oryctolagus cuniculus). J Oral Maxillofac Surg. 2004;62:131–135.
  • Lundgren AK, Sennerby L, Lundgren D. An experimental rabbit model for jaw-bone healing. Int J Oral Maxillofac Surg. 1997;26:461–464.
  • Lundgren AK, Sennerby L, Lundgren D. Guided jaw-bone regeneration using an experimental rabbit model. Int J Oral Maxillofac Surg. 1998;27:135–140.
  • De Souza Nunes LS, De Oliveira RV, Holgado LA, Immunoexpression of Cbfa-1/Runx2 and VEGF in sinus lift procedures using bone substitutes in rabbits. Clin Oral Implants Res. 2010;21:584–590.
  • Lambert F, Lecloux G, Léonard A, Bone regeneration using porous titanium particles versus bovine hydroxyapatite: a sinus lift study in rabbits. Clin Implant Dent Relat Res. 2011. DOI: 10.1111/j.1708-8208.2011.00374.x.
  • Lambert F, Léonard A, Drion P, The effect of collagenated space filling materials in sinus bone augmentation: a study in rabbits. Clin Oral Implants Res. 2012. DOI: 10.1111/j.1600-0501.2011.02412.x.
  • Xu H, Shimizu Y, Onodera K, Ooya K. Long-term outcome of augmentation of the maxillary sinus using deproteinised bone particles experimental study in rabbits. Br J Oral Maxillofac Surg. 2005;43:40–45.
  • Sohn DS, Kim WS, An KM, Comparative histomorphometric analysis of maxillary sinus augmentation with and without bone grafting in rabbit. Implant Dent. 2010;19:259–270.
  • Sicca CM, Corotti MV, Sgarbosa SH, Comparative histomorphometric and tomographic analysis of maxillary sinus floor augmentation in rabbits using autografts and xenografts. J Biomed Mater Res B Appl Biomater. 2008;86:188–196.
  • Wada K, Niimi A, Watanabe K, Maxillary sinus floor augmentation in rabbits: a comparative histologic-histomorphometric study between rhBMP-2 and autogenous bone. Int J Periodontics Restorative Dent. 2001;21:252–263.
  • Sun XJ, Zhang ZY, Wang SY, Maxillary sinus floor elevation using a tissue-engineered bone complex with OsteoBone and bMSCs in rabbits. Clin Oral Implants Res. 2008;19:804–813.
  • Zhang W, Wang X, Wang S, The use of injectable sonication-induced silk hydrogel for VEGF(165) and BMP-2 delivery for elevation of the maxillary sinus floor. Biomaterials. 2011;32:9415–9424.
  • Jiang XQ, Sun XJ, Lai HC, Maxillary sinus floor elevation using a tissue-engineered bone complex with beta-TCP and BMP-2 gene-modified bMSCs in rabbits. Clin Oral Implants Res. 2009;20:1333–1340.
  • Kim BJ, Kwon TK, Baek HS, A comparative study of the effectiveness of sinus bone grafting with recombinant human bone morphogenetic protein 2-coated tricalcium phosphate and platelet-rich fibrin-mixed tricalcium phosphate in rabbits. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011. DOI: 10.1016/j.tripleo.2011.04.029.
  • Sohn DS, Moon JW, Lee WH, Comparison of new bone formation in the maxillary sinus with and without bone grafts: immunochemical rabbit study. Int J Oral Maxillofac Implants. 2011;26:1033–1042.
  • Hou CJ, Liu JL, Li X, Bi LJ. Insulin promotes bone formation in augmented maxillary sinus in diabetic rabbits. Int J Oral Maxillofac Surg. 2012;41:400–407.
  • Okafuji N, Shimizu T, Watanabe T, Tissue reaction to poly (lactic-co-glycolic acid) copolymer membrane in rhBMP used rabbit experimental mandibular reconstruction. Eur J Med Res. 2006;11:394–396.
  • Marei MK, Nouh SR, Saad MM, Preservation and regeneration of alveolar bone by tissue-engineered implants. Tissue Eng. 2005;11:751–767.
  • Lye KW, Tideman H, Wolke JC, Biocompatibility and bone formation with porous modified PMMA in normal and irradiated mandibular tissue. Clin Oral Implants Res. 2011. DOI: 10.1111/j.1600–0501.2011.02388.x.
  • Ma Y, Shen G. Distraction osteogenesis after irradiation in rabbit mandibles. Br J Oral Maxillofac Surg. 2011. DOI: 10.1016/j.bjoms.2011.10.008.
  • Muhonen A, Muhonen J, Minn H, The effects of irradiation and hyperbaric oxygen on bone formation during rabbit mandibular distraction. Arch Oral Biol. 2002;47:701–707.
  • Clark CL, Strider J, Hall C, Distraction osteogenesis in irradiated rabbit mandibles with adjunctive hyperbaric oxygen therapy. J Oral Maxillofac Surg. 2006;64:589–593.
  • Shao Z, Liu B, Liu Y, Distraction osteogenesis in the irradiated rabbit mandible. J Plast Reconstr Aesthet Surg. 2006;59:181–187.
  • Long J, Li P, Du HM, Effects of bone morphogenetic protein 2 gene therapy on new bone formation during mandibular distraction osteogenesis at rapid rate in rabbits. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112:50–57.
  • Tekin U, Tüz HH, Onder E, Effects of alendronate on rate of distraction in rabbit mandibles. J Oral Maxillofac Surg. 2008;66:2042–2049.
  • Kiliç E, Ozeç I, Yeler H, Effects of simvastatin on mandibular distraction osteogenesis. J Oral Maxillofac Surg. 2008;66:2233–2238.
  • Pampu AA, Dolanmaz D, Tüz HH, Histomorphometric evaluation of the effects of zoledronic acid on mandibular distraction osteogenesis in rabbits. J Oral Maxillofac Surg. 2008;66:905–910.
  • Eleftheriadis E, Leventis MD, Tosios KI, Osteogenic activity of β-tricalcium phosphate in a hydroxyl sulphate matrix and demineralized bone matrix: a histological study in rabbit mandible. J Oral Sci. 2010;52:377–384.
  • Jegoux F, Aguado E, Cognet R, Alveolar ridge augmentation in irradiated rabbit mandibles. J Biomed Mater Res A. 2010;93:1519–1526.
  • Oliveira NT, Guastaldi FP, Perrotti V, Biomedical Ti-Mo alloys with surface machined and modified by laser beam: biomechanical, histological, and histometric analysis in rabbits. Clin Implant Dent Relat Res. 2011. DOI: 10.1111/j.1708-8208.2011.00354.x.
  • Shin D, Blanchard SB, Ito M, Peripheral quantitative computer tomographic, histomorphometric, and removal torque analyses of two different non-coated implants in a rabbit model. Clin Oral Implants Res. 2011;22:242–250.
  • Queiroz TP, Souza FA, Okamoto R, Evaluation of immediate bone-cell viability and of drill wear after implant osteotomies: immunohistochemistry and scanning electron microscopy analysis. J Oral Maxillofac Surg. 2008;66:1233–1240.
  • He FM, Yang GL, Zhao SF, Mechanical and histomorphometric evaluations of rough titanium implants treated with hydrofluoric acid/nitric acid solution in rabbit tibia. Int J Oral Maxillofac Implants. 2011;26:115–122.
  • Seong WJ, Grami S, Jeong SC, Comparison of push-in versus pull-out tests on bone-implant interfaces of rabbit tibia dental implant healing model. Clin Implant Dent Relat Res. 2011. DOI: 10.1111/j.1708-8208.2011.00357.x.
  • Meirelles L, Uzumaki ET, Lima JH, A novel technique for tailored surface modification of dental implants—a step wise approach based on plasma immersion ion implantation. Clin Oral Implants Res. 2011. DOI: 10.1111/j.1600-0501.2011.02352.x.
  • Choi JY, Lee HJ, Jang JU, Comparison between bioactive fluoride modified and bioinert anodically oxidized implant surfaces in early bone response using rabbit tibia model. Implant Dent. 2012;21:124–128.
  • Scarano A, Carinci F, Mangano C, Removal torque values of titanium implants inserted into bone defects filled with hydroxyapatite: a histologic and histomorphometric analysis in rabbit. Int J Immunopathol Pharmacol. 2007;20:49–53.
  • Gottlow J, Barkamo S, Sennerby L. An experimental comparison of two different clinically used implant designs and surfaces. Clin Implant Dent Relat Res. 2012. DOI: 10.1111/j.1708-8208.2012.00439.x.
  • Sul YT, Jönsson J, Yoon GS, Resonance frequency measurements in vivo and related surface properties of magnesium-incorporated, micropatterned and magnesium-incorporated TiUnite, Osseotite, SLA and TiOblast implants. Clin Oral Implants Res. 2009;20:1146–1155.
  • Yang GL, He FM, Song E, In vivo comparison of bone formation on titanium implant surfaces coated with biomimetically deposited calcium phosphate or electrochemically deposited hydroxyapatite. Int J Oral Maxillofac Implants. 2010;25:669–680.
  • Hsu SK, Huang WT, Liu BS, Effects of near-field ultrasound stimulation on new bone formation and osseointegration of dental titanium implants in vitro and in vivo. Ultrasound Med Biol. 2011;37:403–416.
  • Poulos NM, Rodriguez NA, Lee J, Evaluation of a novel calcium phosphate-coated titanium porous oxide implant surface: a study in rabbits. Int J Oral Maxillofac Implants. 2011;26:731–738.
  • Slaets E, Naert I, Carmeliet G, Early cortical bone healing around loaded titanium implants: a histological study in the rabbit. Clin Oral Implants Res. 2009;20:126–134.
  • Rønold HJ, Ellingsen JE. The use of a coin shaped implant for direct in situ measurement of attachment strength for osseointegrating biomaterial surfaces. Biomaterials. 2002;23:2201–2209.
  • Rønold HJ, Ellingsen JE, Lyngstadaas SP. Tensile force testing of optimized coin-shaped titanium implant attachment kinetics in the rabbit tibiae. J Mater Sci Mater Med. 2003;14:843–849.
  • Rønold HJ, Ellingsen JE. Effect of micro-roughness produced by TiO2 blasting–tensile testing of bone attachment by using coin-shaped implants. Biomaterials. 2002;23:4211–4219.
  • Rasmusson L, Meredith N, Kahnberg KE, Stability assessments and histology of titanium implants placed simultaneously with autogenous onlay bone in the rabbit tibia. Int J Oral Maxillofac Surg. 1998;27:229–235.
  • Rasmusson L, Meredith N, Kahnberg KE, Sennerby L. Effects of barrier membranes on bone resorption and implant stability in onlay bone grafts. An experimental study. Clin Oral Implants Res. 1999;10:267–277.
  • Carmagnola D, Abati S, Celestino S, Oral implants placed in bone defects treated with Bio-Oss, Ostim-Paste or PerioGlas: an experimental study in the rabbit tibiae. Clin Oral Implants Res. 2008;19:1246–1253.
  • Inaba M. Evaluation of primary stability of inclined orthodontic mini-implants. J Oral Sci. 2009;51:347–353.
  • Majzoub Z, Finotti M, Miotti F, Bone response to orthodontic loading of endosseous implants in the rabbit calvaria: early continuous distalizing forces. Eur J Orthod. 1999;21:223–230.
  • Vehof JW, Haus MT, de Ruijter AE, Bone formation in transforming growth factor beta-I-loaded titanium fiber mesh implants. Clin Oral Implants Res. 2002;13:94–102.
  • Berezowsky S, Untersuchungen ueber die Bedingungen und Methodik operativer Druckentlastung des Gehirnes. Deutsch Zschr Chir. 1899;53:53–125.
  • Hopper RA, Zhang JR, Fourasier VL, Effect of isolation of periosteum and dura on the healing of rabbit calvarial inlay bone grafts. Plast Reconstr Surg. 2001;107:454–462.
  • Park JW, Ko HJ, Jang JH, Increased new bone formation with a surface magnesium-incorporated deproteinized porcine bone substitute in rabbit calvarial defects. J Biomed Mater Res A. 2012;100:834–840.
  • Humber CC, Sándor GK, Davis JM, Bone healing with an in situ-formed bioresorbable polyethylene glycol hydrogel membrane in rabbit calvarial defects. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109:372–384.
  • Thaller SR, Hoyt J, Dart A, Repair of experimental calvarial defects with Bio-Oss particles and collagen sponges in a rabbit model. J Craniofac Surg. 1994;5:242–246.
  • Aghaloo TL, Moy PK, Freymiller EG. Evaluation of platelet-rich plasma in combination with anorganic bovine bone in the rabbit cranium: a pilot study. Int J Oral Maxillofac Implants. 2004;19:59–65.
  • Haddad AJ, Peel SA, Clokie CM, Sándor GK. Closure of rabbit calvarial critical-sized defects using protective composite allogeneic and alloplastic bone substitutes. J Craniofac Surg. 2006;17:926–934.
  • Park JW, Kim ES, Jang JH, Healing of rabbit calvarial bone defects using biphasic calcium phosphate ceramics made of submicron-sized grains with a hierarchical pore structure. Clin Oral Implants Res. 2010;21:268–276.
  • Lundgren AK, Lundgren D, Wennerberg A, Influence of surface roughness of barrier walls on guided bone augmentation: experimental study in rabbits. Clin Implant Dent Relat Res. 1999;1:41–48.
  • Reid CA, McCarthy JG, Kolber AB. A study of regeneration in parietal bone defects in rabbits. Plast Reconstr Surg. 1981;67:591–596.
  • Slotte C, Lundgren D, Sennerby L. Bone morphology and vascularization of untreated and guided bone augmentation-treated rabbit calvaria: evaluation of an augmentation model. Clin Oral Implants Res. 2005;16:228–235.
  • Lundgren AK, Lundgren D, Hämmerle CH, Influence of decortication of the donor bone on guided bone augmentation. An experimental study in the rabbit skull bone. Clin Oral Implants Res. 2000;11:99–106.
  • Frame JW. A convenient animal model for testing bone substitute materials. J Oral Surg. 1980;38:176–180.
  • Frame JW. A composite of porous calcium sulphate dihydrate and cyanoacrylate as a substitute for autogenous bone. J Oral Surg. 1980;38:251–256.
  • Vignoletti F, Abrahamsson I. Quality of reporting of experimental research in implant dentistry. Critical aspects in design, outcome assessment and model validation. J Clin Periodontol. 2012. DOI: 10.1111/j.1600-051X.2011.01830.x.
  • Lang NP, Pun L, Lau KY, A systematic review on survival and success rates of implants placed immediately into fresh extraction sockets after at least 1 year. Clin Oral Implants Res. 2012;23:39–66.
  • Wennerberg A, Albrektsson T. Current challenges in successful rehabilitation with oral implants. J Oral Rehabil. 2011;38:286–294.
  • Berglundh T, Persson L, Klinge B. A systematic review of the incidence of biological and technical complications in implant dentistry reported in prospective longitudinal studies of at least 5 years. J Clin Periodontol. 2002;29:197–212.
  • Natiella JR. The use of animal models in research on dental implants. Int J Oral Implantol. 1988;5:61–64.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.