Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 26, 2014 - Issue 13
2,326
Views
22
CrossRef citations to date
0
Altmetric
Review Article

Perspectives on refractory ceramic fiber (RCF) carcinogenicity: comparisons with other fibers

, , &
Pages 789-810 | Received 25 Jun 2014, Accepted 05 Aug 2014, Published online: 29 Sep 2014

References

  • Aboagye-Sarfo P, Reid A, de Klerk N, et al. (2011). Determinants of latency periods of lung cancer (LC) and malignant mesothelioma (MM) in former workers and residents exposed to crocidolite at Wittenoom Western Australia. Abstract from the ATS International Conference published in AJRCCM, C53. Lung disease due to asbestos 2011:A4812
  • ACC. (2004). ACC Review: Asbestos-related disease. Issue 11, June, 2004. Pp 1-2. Available at: http://hazelarmstronglaw.co.nz/beta/wp-content/uploads/2012/10/ACC-Review-Asbestos-related-disease.pdf [Last accessed: 24 Jun 2014]
  • Agence Française de Sécurité Sanitaire de l'Environment et du Travail (AFSSET). (2007). Les fibres minérales artificielles, evaluation de l'exposition de la population générale et des travailleurs. Saisine 2004/012 Rapport Final Relatif aux Fibres. April 2007, pp. 290. Available at: http://www.afssa.fr/ET/DocumentsET/fibres_minerales_artificielles_siliceuses_2007.pdf [Last accessed: 24 Jun 2014]
  • Agency for Toxic Substances and Disease Registry (ATSDR). (2004). Toxicological Profile for Synthetic Vitreous Fibers, September 2004, Atlanta, Georgia, pp. 332. Available at http://www.atsdr.cdc.gov/toxprofiles/tp161.pdf [Last accessed: 24 Jun 2014]
  • Agency for Toxic Substances and Disease Registry (ATSDR). (2001). Toxicological Profile for Asbestos, September 2001, Atlanta, Georgia, pp. 441. Available at http://www.atsdr.cdc.gov/toxprofiles/tp61.pdf [Last accessed: 24 Jun 2014]
  • Agency for Toxic Substances and Disease Registry (ATSDR). (2000). Asbestos toxicity physiologic effects. Hosted on the ATSDR website. Available at: http://www.atsdr.cdc.gov/asbestos/asbestos/health_effects/ [Last accessed: 24 Jun 2014]
  • Ameille J. (2012). The different pleuro-pulmonary pathologies related to asbestos: definitions, epidemiology and evolution. Rev Mal Respir 29:1035–46
  • Ameille J, Brochard P, Letourneux M. (2011). Asbestos-related cancer risk in patients with asbestosis or pleural plaques. Rev Mal Respir 28:e11–17
  • Assuncao J, Corn M. (1975). The effects of milling on diameters and lengths of fibrous glass and chrysotile asbestos fibers. Am Ind Hyg Assoc J 36:811–19
  • Attanoos RL, Suvarna SK, Rhead E, et al. (2000). Malignant vascular tumours of the pleura in “asbestos” workers and endothelial differentiation in malignant mesothelioma. Thorax 55:860–3
  • Baas P, Schouwink H, Zoetmulder FAN. (1998). Malignant pleural mesothelioma. Ann Oncol 9:139–49
  • Baccarelli A, Khmelnitskii O, Tretiakova M, et al. (2006). Risk of lung cancer from exposure to dusts and fibers in Leningrad Province, Russia. Am J Ind Med 49:460–7
  • Banaei A, Auvert B, Goldberg M, et al. (2000). Future trends in mortality of French men from mesothelioma. Occup Environ Med 57:488–94
  • Banks DE, Dedhia HV. (2011). Chapter 110 – the health risks of asbestos exposure inhalation. In: Jindal SK, Shankar P, Raoof S, Gupta D, Aggarwal A. (eds.) Textbook of pulmonary and critical care medicine. 1st ed. New Delhi, India: Jaypee Brothers Medical Publishers, 1352–66
  • Berman DW, Crump KS. (2008). A meta-analysis of asbestos-related cancer risk that addresses fiber size and mineral type. Crit Rev Toxicol 38:49–73
  • Berman DW, Crump KS, Chatfield EJ, et al. (1995). The sizes, shapes, and mineralogy of asbestos structures that induce lung tumors or mesothelioma in AF/HAN rats following inhalation. Risk Anal 15:181–95
  • Bernstein DM. (2007). Synthetic vitreous fibers: a review toxicology, epidemiology and regulations. Crit Rev Toxicol 37:839–86
  • Bernstein DM, Hoskins JA. (2006). The health effects of chrysotile: current perspective bases upon recent data. Reg Toxicol Pharm 45:252–64
  • Bernstein DM, Chevalier J, Smith P. (2003). Comparison of Calidria chrysotile asbestos to pure tremolite: inhalation biopersistence and histopathology following short-term exposure. Inhal Toxicol 15:1387–419
  • Bernstein DM, Sintes JMR, Ersboell BK, Kunert J. (2001a). Biopersistence of synthetic mineral fibers as a predictor of chronic inhalation toxicity in rats. Inhal Toxicol 13:823–49
  • Bernstein DM, Sintes JMR, Ersboell BK, Kunert J. (2001b). Biopersistence of synthetic mineral fibers as a predictor of chronic intraperitoneal injection tumor response in rats. Inhal Toxicol 13:851–75
  • Bernstein DM. (1997a). Data analysis of IT and INH biopersistence data. Report to Dr. J. Riego-Sintes, Joint Research Centre, Environment Institute, European Chemicals Bureau, Ispra, Italy, pp. 15 [Tables 2 and 3]
  • Bernstein DM. (1997b). Correlation between short term biopersistence and chronic toxicity studies. Report to Dr. J. Riego-Sintes, Joint Research Centre, Environment Institute, European Chemicals Bureau, Ispra, Italy, pp. 67 [end tables]
  • Bernstein DM, Morscheidt C, de Meringo A, et al. (1997). The biopersistence of fibres following inhalation and intratracheal instillation exposure. Ann Occup Hyg 41:224–30
  • Bernstein DM, Morschedit C, Grimm H-G, et al. (1996). Evaluation of soluble fibers using the inhalation biopersistence model, a nine-fiber comparison. Inhal Toxicol 8:345–85
  • Berry C. (1999). Models for mesothelioma incidence following exposure to fibers in terms of timing and duration of exposure and the biopersistence of fibers. Inhal Toxicol 11:111–30
  • Bianchi C, Bianchi T. (2012). Mesothelioma among shipyard workers in Monfalcone, Italy. Indian J Occup Environ Med 16:119–23
  • Bianchi C, Bianchi T. (2009). Malignant pleural mesothelioma in Italy. Indian J Occup Environ Med 13:80–3
  • Bianchi C, Bianchi T. (2007). Malignant mesothelioma: global incidence and relationship with asbestos. Ind Health 45:379–87
  • Bianchi C, Bianchi T, Ramani L. (2007). Malignant mesothelioma of the pleura and other malignancies in the same patient. Tumori 93:19–22
  • Bianchi C, Brollo A, Ramani L, et al. (2001). Asbestos exposure in malignant mesothelioma of the pleura: a survey of 557 cases. Ind Health 39:161–7
  • Bitchatchi E, Kayser K, Perelman M, Richter ED. (2010). Mesothelioma and asbestos in a young woman following occupational asbestos exposure: short latency and long survival: case report. Diag Pathol 5:81–4
  • Boffetta P, Donaldson K, Moolgavkar S, Mandel JS. (2014). A systematic review of occupational exposure to synthetic vitreous fibers and mesothelioma. Crit Rev Toxicol 44:436–49
  • Boffetta P, Andersen A, Hansen J, et al. (1999). Cancer incidence among European man-made vitreous fibre production workers. Scand J Work Environ Health 25:222–6
  • Boffetta P, Saracci R, Andersen A, et al. (1997). Cancer mortality among man-made vitreous fibre production workers. Epidemiology 8:259–68
  • Bolton RE, Davis JMG, Miller B, et al. (1984). The effect of dose of asbestos on mesothelioma production in the laboratory rat. Proceedings of the 6th International Pneumonoconiosis Conference 2:1028–35
  • Bolton RE, Davis JMG, Donaldson K, Wright A. (1982). Variation in the carcinogenicity of mineral fibres. Ann Occup Hyg 26:569–82
  • Bonde JP. (2013). No indication that mineral wool causes mesothelioma. Am J Respir Crit Care Med 188:873
  • British Lung Foundation. (2011). Pleural Plaques., Online report, version 2.2, May 2011. Hosted on the British Lung Foundation. Available at http://www.blf.org.uk/Conditions/Detail/Pleural-plaques [Last accessed: 24 Jun 2014]
  • Brown RC, Bellmann B, Muhle H, et al. (2005). Survey of the biological effects of refractory ceramic fibres: overload and its possible consequences. Ann Occup Hyg 49:295–307
  • Browne K, Smither WJ. (1983). Asbestos-related mesothelioma: factors discriminating between pleural and peritoneal sites. Br J Ind Med 40:145–52
  • Burge PS, Calvert IA, Trethowan WN, Harrington JM. (1995). Are the respiratory health effects found in manufacturers of ceramic fibers due to the dust rather than the exposure to fibers? Occup Environ Med 52:105–9
  • Campopiano A, Zakrewska A, Olori A, et al. (2012). Glass fiber exposure assessment during ceiling installation by European Standard EN 689: study of airborne fiber distribution. Atmos Pollut Res 3:192–8
  • Carbone M, Kratzke RA, Testa JR. (2002). The pathogenesis of mesothelioma. Semin Oncol 29:2–17
  • Carel R, Olsson AC, Zarisze D, et al. (2007). Occupational exposure to asbestos and man-made vitreous fibres and risk of lung cancer: a multicenter case-control study in Europe. Occup Environ Med 64:502–8
  • Chang KC, Leung CC, Tam CM, et al. (2006). Malignant mesothelioma in Hong Kong. Respir Med 100:75–82
  • Cheng Y-S. (1986). Bivariate lognormal distribution for characterizing asbestos fiber aerosols. Aerosol Sci Tech 5:359–68
  • Cherrie J, Dodgson J, Groat S, Maclaren W. (1986). Environmental surveys in the European man-made mineral fiber production industry. Scand J Work Environ Health 12:18–25
  • Christensen VR, Eastes W, Hamilton RD, Struss AW. (1993). Fiber diameter distributions in typical MMVF wool insulation products. Am Ind Hyg Assoc J 54:232–8
  • Consonni D, Boffetta P, Andersen A, et al. (1998). Lung cancer mortality among European rock/slag wool workers: exposure-response analysis. Cancer Causes Control 9:411–16
  • Corn M, Hammad Y, Whittier D, Kotsko N. (1976). Employee exposure to airborne fiber and total particulate matter in two mineral wool facilities. Environ Res 12:59–74
  • Cowie HA, Wild P, Beck J, et al. (2001). An epidemiological study of the respiratory health of workers in the European refractory ceramic fibre (RCF) industry. Occup Environ Med 58:800–10
  • Crapo J. (2005). Testimony: A fair and efficient system to resolve claims of victims for bodily injury caused by asbestos, and for other purposes. Written Statement of Dr. James D. Crapo, Professor of Medicine, National Jewish Medical and Research Center and University of Colorado Health Sciences Center Before the Senate Committee on the Judiciary Concerning S.852, “FAIR Act of 2005”. April 26, 2006. 10 p
  • Davis JM, Jones JD. (1988). Comparison of the pathogenicity of long and short fibres of chrysotile asbestos in rats. Br J Exp Pathol 69:717–37
  • Davis JMG, Addison J, Bolton RE, et al. (1986). The pathogenicity of long versus short fiber samples of amosite asbestos administered to rats by inhalation and intraperitoneal injection. Br J Exp Pathol 67:415–30
  • Davis JMG, Addison J, Bolton RE, et al. (1984). The pathogenicity of fibrous ceramic aluminum silicate glass administered to rats by inhalation or peritoneal injection. In: Biological effects of man-made mineral fibers, Vol. 2. Copenhagen: World Health Organization, Regional Office for Europe, 303–22
  • Dement JM. (1990). Overview: workshop on fiber toxicology research needs. Environ Health Perspect 88:261–8
  • Desoubeaux N, Bouvier V, Gervais R, et al. (2001). Mesotheliomes malins en Basse-Normandie: analyse descriptive, facteurs pronostiques et survie – une et́ude de population. Rev Epidemiol Sante Publ 49:523–9
  • de Vuyst P, Dumortier P, Swaen GMH, et al. (1995). Respiratory health effects of man-made vitreous (mineral) fibres. Eur Respir J 8:2149–73
  • Dodson RF, Atkinson MA, Levin JL. (2003). Asbestos fiber length as related to potential pathogenicity: a critical review. Am J Ind Med 44:291–7
  • Donaldson K, Tran CL. (2004). An introduction to the short-term toxicity of respirable industrial fibres. Mut Res Fund Mol Mech Mut 553:5–9
  • Downer NJ, Ali NJ, Au-Yong IT. (2013). Investigating pleural thickening. BMJ 346:e8376
  • Eastes W, Hadley JG. (1994). Role of fiber dissolution in biological activity in rats. Reg Toxicol Pharm 20:S104–12
  • Eastes W, Hadley JG, Bender JR. (1996). Assessing the biological activity of fibers: insights into the role of fiber durability. J Occup Health Safety Aust NZ 12:381–5
  • Edelman DA. (1988). Asbestos exposure, pleural plaques and the risk of lung cancer. Int Arch Occup Environ Health 60:389–93
  • Environmental Resources Management (ERM). (1995). Description and characterization of the ceramic fibres industry of the European Union, Final Report for the European Commission (Reference 3059), ERM is a trading name of ERL, Environmental Resources Limited, Brussels, Belgium
  • Esman N, Corn M, Hammad Y, et al. (1979). Summary of measurements of employee exposures to airborne dust and fiber in sixteen facilities producing MMMFs. Am Ind Hyg Assoc J 40:106–17
  • Esman N, Sheehan MJ, Corn M, et al. (1982). Exposure of employees to manmade vitreous fibers: installation of insulation materials. Environ Res 28:386–98
  • Federal Register. (2005). Part II, Department of Labor, Mine Safety and Health Administration, 30 CFR Parts 56, 57, and 71. Asbestos Exposure Limit; Proposed Rule, Vol. 70, No. 145, 29 July 2005, 43950–89
  • Filiberti R, Marroni P, Spigno F, et al. (2014). Is soluble mesothelin-related protein an upfront predictive marker of pleural mesothelioma? A prospective study on Italian workers exposed to asbestos. Oncology 86:33–43
  • Frost G. (2013). The latency period of mesothelioma among a cohort of British asbestos workers (1978–2005). Br J Cancer 109:1965–73
  • Gemba K, Fujimoto N, Kato K, et al. (2012). National survey of malignant mesothelioma and asbestos exposure in Japan. Cancer Sci 103:483–90
  • Gevenois PA, de Vuyst P. (2006). Imaging of occupational and environmental disorders of the chest. In: Baert AL, Sartor K. (eds.) Part of the medical radiology, diagnostic imaging and radiation oncology series. New York: Springer, 315 p
  • Gibbs GW, Hwang CY. (1980). Dimensions of airborne asbestos fibres. In: Wagner JC. (ed.) Biological effects of mineral fibers. Copenhagen: IARC Scientific Publications No. 30:69–78
  • Gube M, Taegger D, Weber DG, et al. (2011). Performance of biomarkers SMRP, CA125, and CYFRA 21-1 as a potential tumor markers for malignant mesothelioma and lung cancer in a cohort of workers formerly exposed to asbestos. Arch Toxicol 85:185–92
  • Guber A, Lerman S, Lerman Y, et al. (2006). Pulmonary fibrosis in a patient with exposure to glass wool fibers. Am J Ind Med 49:1066–9
  • Guldberg M, Christensen VR, Perander M, et al. (1998). Measurement of in-vitro fibre dissolution rate at acidic pH. Ann Occup Hyg 42:233–43
  • Haber SE, Haber JM. (2011). Malignant mesothelioma: a clinical study of 238 cases. Ind Health 49:166–72
  • Harber P, Moshenifar Z, Oren A, Lew M. (1987). Pleural plaques and asbestos-associated malignancy. J Occup Med 29:641–4
  • Harding A-H, Darnton AJ. (2010). Asbestosis and mesothelioma among British asbestos workers (1971–2005). Am J Ind Med 53:1070–80
  • Hauptverband der gewerblichen Berufsgenossenschaften (HVGB). (1998). BIA-Report, Fasern—Test zur Abschätzung der Biobeständigkeit und zum Verstaubungsverhalten. Prepared by H. Muhle, and B. Bellmann, February, 369 p. Available at: http://www.dguv.de/ifa/Publikationen/Reports-Download/BIA-Reports-1997-bis-1998/BIA-Report-2-98/index.jsp [Last accessed: 24 Jun 2014]
  • Health Council of the Netherlands (DECOS). (2011). Refractory ceramic fibres, evaluation of the carcinogenicity and genotoxicity. The Hague: Health Council of the Netherlands, publication no. 2011/29. Available at: http://www.gezondheidsraad.nl/sites/default/files/201129_1.pdf [Last accessed: 24 Jun 2014]
  • Health Council of the Netherlands (DECOS). (2010). Asbestos, risks of environmental and occupational exposure. The Hague: Health Council of the Netherlands, publication no. 2010/10E, 3 June 2010. Available at: http://www.gezondheidsraad.nl/sites/default/files/201010E.pdf [Last accessed: 24 Jun 2014]
  • Heintz NH, Janssen-Heininger YM, Mossman BT. (2010). Asbestos, lung cancers, and mesotheliomas: from molecular approaches to targeting tumor survival pathways. Am J Respir Cell Mol Biol 42:133–9
  • Hesterberg TW, Chase G, Axten C, et al. (1998). Biopersistence of synthetic vitreous fibers and amosite asbestos in the rat lung following inhalation. Toxicol Appl Pharmacol 151:262–75
  • Hesterberg TW, Miller WC, Musselman RP, et al. (1996). Biopersistence of man-made vitreous fibers and crocidolite asbestos in the rat lung following inhalation. Fund Appl Toxicol 29:267–79
  • Hesterberg TW, Miiller WC, Mast R, et al. (1994). Relationship between lung biopersistence and biological effects of man-made vitreous fibers after chronic inhalation in rats. Environ Health Perspect 102:133–7
  • Hillerdal G. (2001). Radiological changes as markers of environmental exposure and environmental risk of lung cancer and mesothelioma. Presented at the USEPA 2001 Asbestos Health Effects Conference, May 24–25, Oakland, CA
  • Hillerdal G. (1997). Pleural plaques: incidence and epidemiology, exposed workers and the general population. Indoor-Built Environ 6:86–95
  • Hillerdal G. (1994). Pleural plaques and risk for bronchial carcinoma and mesothelioma. A prospective study. Chest 105:144–50
  • Hilliard AK, Lovett JK, McGavin CR. (2003). The rise and fall in incidence of malignant mesothelioma from a British Naval Dockyard, 1979–1999. Occup Med 53:209–12
  • Hirohashi T, Igarashi K, Abe M, et al. (2014). Retrospective analysis of large-scale research screening of construction workers for the early diagnosis of mesothelioma. Mol Clin Oncol 2:26–30
  • Hwang C. (1983). Size and shape of airborne asbestos fibres in mines and mills. Br J Ind Med 40:273–9
  • Hyland RA, Ware S, Johnson AR, Yates DH. (2007). Incidence trends and gender differences in malignant mesothelioma in New South Wales, Australia. Scand J Work Environ Health 33:286–92
  • ILSI Working Group. (2005). Testing of fibrous particles: short-term assays and strategies. lnhal Toxicol 17:497–537
  • Imperatori A, Castiglioni M, Mortara L, et al. (2013). The challenge of prognostic markers in pleural mesothelioma. J Thorac Dis 5:205–6
  • Industrial Industries Advisory Council (IIAC). (2008). Position Paper 23 Pleural Plaques. United Kingdom, 60 pp. Available at: http://www.iiac.org.uk/pdf/pos_papers/pp23.pdf [Last accessed: 24 Jun 2014]
  • International Agency for Research on Cancer (IARC). (2002). Man-made vitreous fibres. Vol. 81. Available at http://monographs.iarc.fr/ENG/Monographs/vol81/ [Last accessed: 24 Jun 2014]
  • Järvholm B, Hillerdal G, Järliden A-K, et al. (1995). Occurrence of pleural plaques in workers with exposure to mineral wool. Int Arch Occup Environ Health 67:343–6
  • Jones RN, Hughes JM, Weill H. (1996). Asbestos exposure, asbestosis, and asbestos-attributable lung cancer. Thorax 51:S9–15
  • Jones RD, Smith DM, Thomas PG. (1988). Mesothelioma in Great Britain in 1968–1983. Scand J Work Environ Health 14:145–52
  • Kamstrup O, Ellehauge A, Collier CG, Davis JMG. (2002). Carcinogenicity studies after intraperitoneal injection of two types of stone wool fibres in rats. Ann Occup Hyg 46:135–42
  • Kane MJ, Chahinian AP, Holland JF. (2006). Malignant mesothelioma in young adults. Cancer 65:1449–55
  • Kauffer E, Martin P, Grzebyk M, et al. (2003). Comparison of two direct-reading instruments (FM-7400 and Fibrecheck FC-2) with phase contrast optical microscopy to measure to airborne fibre number concentration. Ann Occup Hyg 47:413–26
  • Kjaerheim K, Boffetta P, Hansen J, et al. (2002). Lung cancer among rock and slag wool production workers. Epidemiology 13:445–53
  • Krantz S. (1988). Exposure to man-made mineral fibers at ten production plants in Sweden. Scand J Work Environ Health 14:49–51
  • Krombach F, Muncing S, Allmeling AM, et al. (1997). Cell size of alveolar machrophages: an interspecies comparison. Environ Health Perspect 105:1261–3
  • Kudo M, Aizawa Y. (2008). Biopersistence of rock wool in lungs after short-term inhalation in rats. Inhal Toxicol 20:137–47
  • Lacourt A, Gramond C, Audignon S, et al. (2013). Pleural mesothelioma and occupational coexposure to asbestos, mineral wool, and silica. Am J Respir Crit Care Med 187:977–82
  • Lanphear BP, Buncher CR. (1992). Latent period for malignant mesothelioma of occupational origin. J Occup Med 7:718–21
  • LeMasters GK, Lockey JE, Yiin JH, et al. (2003). Mortality of workers occupationally exposed to refractory ceramic fibers. J Occup Environ Med 45:440–50
  • LeMasters GK, Lockey JE, Levin LS, et al. (1998). An industry-wide pulmonary study of men and women manufacturing refractory ceramic fibers. Am J Epidemiol 148:910–19
  • Letourneux M. (1999). Risk assessment of benign asbestosis (dose-effect relationship, time-effect relationship, co-factors). Rev Mal Respir 16:1270–7
  • Lippmann M. (1990). Effects of fiber characteristics on lung deposition, retention, and disease. Environ Health Perspect 88:311–17
  • Lipworth L, La Vecchia C, Bosetti C, McLaughlin JK. (2009). Occupational exposure to rock wool and glass wool and risk of cancers of the lung and the head and neck: a systematic review and meta-analysis. JOEM 51:1057–87
  • Lockey JE, Roggli VL, Hilbert TJ, et al. (2012). Biopersistence of refractory ceramic fiber (RCF) in human lung tissue and a 20-year follow-up of radiographic pleural changes in workers. J Occup Environ Med 54:781–8
  • Lockey JE, LeMasters GK, Levin L, et al. (2002). A longitudinal study of chest radiographic changes of workers in the refractory ceramic fiber industry. Chest 121:2044–51
  • Lockey JE, Levin L, LeMasters GK, et al. (1998). Longitudinal estimates of pulmonary function in refractory ceramic fiber manufacturing workers. Am J Respir Crit Care Med 157:1226–33
  • Lockey J, LeMasters G, Rice C, et al. (1996). Refractory ceramic fiber exposure and pleural plaques. Am J Respir Crit Care Med 154:1405–10
  • Marinaccio A, Binazzi A, Cauzillo G, et al. (2007). Analysis of latency time and its determinants in asbestos related malignant mesothelioma cases of the Italian register. Eur J Cancer 43:2722–8
  • Marinaccio A, Montanaro F, Mastrantonio M, et al., (2005). Predictions of mortality from pleural mesothelioma in Italy: a model based on asbestos consumption figures supports results from age-period-cohort models. Int J Cancer 115:142–7
  • Marsh GM, Buchanich JM, Youk AO. (2011). Fiber glass exposure and human respiratory system cancer risk: lack of evidence persists since 2001 IARC re-evaluation. Regul Toxicol Pharm 60:84–92
  • Marsh G, Stone R, Youk A, et al. (1996). Mortality among United States rock wool and slag wool workers: 1989 Update. J Occup Health Saf Aust NZ 12:297–312
  • Marsh GM, Enterline PE, Stone RA, Henderson VL. (1990). Mortality among a cohort of US man-made mineral fiber workers: 1985 Follow-up. J Occup Med 32:594–604
  • Mast RW, McConnell EE, Anderson R, et al. (1995a). Studies on the chronic toxicity (inhalation) of four types of refractory ceramic fiber in male Fischer 344 rats. Inhal Toxicol 7:425–67
  • Mast RW, McConnell EE, Hesterberg TW, et al. (1995b). Multiple dose chronic inhalation study of size-separated kaolin refractory fiber in male Fischer 344 rats. Inhal Toxicol 7:469–502
  • Mast RW, Maxim LD, Utell MJ, Walker AM. (2000a). Refractory ceramic fiber: toxicology, epidemiology, and risk analyses – a review. Inhal Toxicol 12:359–99
  • Mast RW, Yu CP, Oberdörster G, et al. (2000b). A retrospective review of the carcinogenicity of refractory ceramic fiber in two chronic Fischer 344 rat inhalation studies: an assessment of the MTD and implications for risk assessment. Inhal Toxicol 12:1141–72
  • Maxim LD, Allshouse J, Fairfax RF, et al. (2008). Workplace monitoring of occupational exposure to refractory ceramic fiber – a 17-year retrospective. Inhal Toxicol 20:289–309
  • Maxim LD, Hadley JG, Potter RM, Niebo R. (2006). The role of fiber durability/ biopersistence of silica-based synthetic vitreous fibers and their influence on toxicology. Regul Toxicol Pharm 46:42–62
  • Maxim LD, Kelly WP, Walters T, Waugh R. (1997). A multi-year workplace-monitoring program for refractory ceramic fibers. Regul Toxicol Pharm 26:156–71
  • McConnell EE. (2000). A science-based paradigm for the classification of synthetic vitreous fibers. Regul Toxicol Pharm 32:14–21
  • McConnell EE, Mast RW, Hesterberg TW, et al. (1995). Chronic inhalation toxicity of a kaolin-based refractory ceramic fiber in Syrian golden hamsters. Inhal Toxicol 7:503–32
  • McConnell EE, Kamstrup O, Musselman R, et al. (1994). Chronic inhalation study of size-separated rock and slag wool insulation fibers in Fischer 344/N rats. Inhal Toxicol 6:571–61
  • McDonald JC, McDonald AD. (1979). Age and latency in mesothelioma. Lancet 314:1074
  • McKay RT, LeMasters GK, Hilbert TJ, et al. (2010). A long term study of pulmonary function among US refractory ceramic fibre workers. Occup Environ Med 68:89–95
  • Metintas S, Metintas M, Ucgun I, Oner U. (2002). Malignant mesothelioma due to environmental exposure to asbestos. Chest 122:2224–9
  • Miller BG, Searl A, Davis JMG, et al. (1999). Influence of fibre length, dissolution and biopersistence on the production of mesothelioma in the rat peritoneal cavity. Ann Occup Hyg 43:155–66
  • Moolgavkar SH, Brown RC, Turim J. (2001a). Biopersistence, fiber length, and cancer risk assessment for inhaled fibers. Inhal Toxicol 13:755–72
  • Moolgavkar SH, Turim J, Brown RC. (2001b). The power of the European Union protocol to test for carcinogenicity of inhaled fibers. Regul Toxicol Pharmacol 33:350–5
  • Moolgavkar SH, Turim J, Brown RC, Luebeck EG. (2001c). Long man-made fibers and lung cancer risk. Regul Toxicol Pharmacol 33:138–46
  • Moolgavkar SH, Luebeck EG, Turim J, Brown RC. (2000). Lung cancer risk associated with exposure to man-made fibers. Drug Chem Toxicol 23:223–42
  • Morinaga K, Kishimoto T, Sakatani M, et al. (2001). Asbestos-related lung cancer and mesothelioma in Japan. Ind Health 39:65–74
  • Morrow PE, Haseman JK, Hobbs CH, et al. (1996). Workshop overview - the maximum tolerated dose for inhalation bioassays: toxicity vs. overload. Fund Appl Toxicol 29:155–67
  • Mowé G, Gylseth B, Hartveit F, Skaug V. (1984). Occupational asbestos exposure, lung-fiber concentration and latency time in malignant mesothelioma. Scand J Work Environ Health 10:293–8
  • Murphy FA, Poland CA, Duffin R, et al. (2011). Length-dependent retention of carbon nanotubes in the pleral space of mice initiates sustained inflammation and progressive fibrosis on the parietal pleura. Am J Pathol 178:2587–600
  • Musselman RP, Miiller WC, Eastes W, et al. (1994). Biopersistence of man-made vitreous fibers and crocidolite fibers in rat lungs following short-term exposures. Environ Health Perspect 102:139–43
  • National Institute for Occupational Safety and Health (NIOSH). (2006). Criteria for a recommended standard, occupational exposure to refractory ceramic fibers. Department of Health and Human Services, Centers for Disease Control Prevention, National Institute for Occupational Safety and Health, Atlanta, Georgia, 203 p
  • National Research Council (NRC). (2000). Review of the U.S. Navy's exposure standard for manufactured vitreous fibers, subcommittee on manufactured vitreous fibers, Committee on Toxicology, Board on Environmental Studies and Toxicology, Commission on Life Sciences, National Research Council. Washington, DC: National Academy Press
  • National Toxicology Program (NTP). (2010). National Toxicology Program. Draft Report on Carcinogens. Substance Profile for Glass Wool Fibers (Respirable) as a Class. Peer review – June 21–22, 2010. Available at: http://ntp.niehs.nih.gov/ntp/roc/twelfth/2010/drftsubprofiles/gwf20100421.pdf [Last accessed: 24 Jun 2014]
  • Neumann V, Günther S, Müller K-M, Fischer M. (2001). Malignant mesothelioma - German mesothelioma register 1987–1999. Int Arch Occup Environ Health 74:383–95
  • Newman LS, Rose CS. (1989). Occupational asbestosis and related diseases. Medical/Scientific Update, National Jewish Center for Immunology and Respiratory Medicine. Available at: http://www.mutnicklaw.com/occupational.pdf [Last accessed: 24 Jun 2014]
  • Oberdörster G, Maynard A, Donaldson K, et al. (2005). Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:35
  • Oberdörster G. (2000). Determinants of the pathogenicity of man-made vitreous fibers (MMVF). Int Arch Occup Environ Health 73:S60–8
  • Olsen NJ, Franklin PJ, Reid A, et al. (2011). Increasing incidence of malignant mesothelioma after exposure to asbestos during home maintenance and renovation. Med J Aust 195:271–4
  • Partanen T, Nurminen M, Zitting A, et al. (1992). Localized pleural plaques and lung cancer. Am J Ind Med 22:185–92
  • Pintos J, Parent M-E, Case BW, et al. (2009). Risk of mesothelioma and occupational exposure to asbestos and man-made vitreous fibers: evidence from two case-control studies in Montreal, Canada. J Occup Environ Med 51:1177–84
  • Pintos J, Parent M-E, Rousseau M-C, et al. (2008). Occupational exposure to asbestos and man-made vitreous fibers, and risk of lung cancer: evidence from two case-control studies in Montreal, Canada. J Occup Environ Med 50:1273–81
  • Plato N, Westerholm P, Gustavsson P, et al. (1995). Cancer incidence, mortality, and exposure-response calculations among Swedish man-made vitreous fiber production workers. Scand J Work Environ Health 21:353–61
  • Pott F, Hoth F, Friedrichs KH. (1974). Tumorigenic effect of fibrous dusts in experimental animals. Environ Health Perspect 9:313–15
  • Pott F, Ziem U, Reiffer F-J, et al. (1987). Carcinogenicity studies on fibres, metal compounds, and some other dusts in rats. Exp Pathol 32:129–52
  • Reid A, de Klerk N, Ambrosini G, et al. (2005). The additional risk of malignant mesothelioma in former workers and residents of Wittenoom with benign pleural disease or asbestosis. Occup Environ Med 62:665–9
  • Reinhartz A. (2004). Fact sheet on pleural plaques. Online report hosted by the International Ban Asbestos Secretariat. Available at: http://ibasecretariat.org/ar_pleural_plaque_faq.php [Last accessed: 24 Jun 2014]
  • Robinson BWS, Lake RA. (2005). Advances in malignant mesothelioma. N Engl J Med 353:1591–603
  • Robinson CF, Dement JM, Ness GO, Waxweiler RJ. (1982). Mortality patterns of rock and slag mineral wool production workers: an epidemiological and environmental study. Br J Ind Med 39:45–53
  • Rödelsperger K. (2004). Extrapolation of the carcinogenic potency of fibers from rats to humans. Inhal Toxicol 16:801–7
  • Roller MF, Pott K, Kamino G-H, et al. (1996). Results of current intraperitoneal carcinogenicity studies with mineral and vitreous fibres. Exp Toxic Pathol 48:3–12
  • Rood AP, Streeter RR. (1984). Size distributions of occupational airborne asbestos textile fibres as determined by transmission electron microscopy. Ann Occup Hyg 28:333–9
  • Rubin A-H. (1986). Common problems in asbestos –related pulmonary diseases. Am J Ind Health 10:555–62
  • Sakellariou K, Malamou-Mitso V, Haritou A, et al. (1996). Malignant pleural mesothelioma from nonoccupational asbestos exposure in Metsovo north-west Greece): slow end of an epidemic? Eur Respir J 9:1206–10
  • Sandén Å, Järvholm B, Larsson S, Thiringer G. (1992). The risk of lung cancer and mesothelioma after cessation of asbestos exposure: a prospective cohort study of shipyard workers. Eur Respir J 5:281–5
  • Sandén Å, Järvholm B. (1991). A study of possible predictors of mesothelioma in shipyard workers exposed to asbestos. J Occup Med 33:770–3
  • Schinwald A, Murphy F, Prina-Mello A, et al. (2012). The threshold length for fibre-induced acute pleural inflammation: shedding light on the early events in asbestos-induced mesothelioma. Toxicol Sci 128:461–70
  • Schneider T, Skotte J, Nissen P. (1985). Man-made mineral fiber size fractions and their interrelation. Scand J Work Environ Health 11:117–22
  • Schneider T, Holst E, Skotte J. (1983). Size distributions of airborne fibres generated from man-made mineral fibre products. Ann Occup Hyg 27:157–71
  • Scientific Committee on Occupational Exposure Limits (SCOEL). (2012). Recommendation from the Scientific Committee on Occupational Exposure Limits for manmade-mineral fibres (MMMF) with no indication for carcinogenicity and not specified elsewhere. SCOEL/SUM/88, March 2012, p. 17
  • Scientific Committee on Occupational Exposure Limits (SCOEL). (2011). Recommendation from the Scientific Committee on Occupational Exposure Limits for Refractory Ceramic fibres. SCOEL/SUM/165, September 2011. 21 p. Available at: http://ec.europa.eu/social/BlobServlet?docId=7371&langId=en [Last accessed: 24 Jun 2014]
  • Selikoff IJ, Churg J, Hammond EC. (1965). Relation between exposure to asbestos and mesothelioma. N Engl J Med 272:560–5
  • Smith D. (1994). Plaques, cancer, and confusion. Chest 105:8–9
  • Smith DM, Ortiz LW, Archuleta RF, Johnson NF. (1987). Long term health effects in hamsters and rats exposed chronically to manmade vitreous fibers. Ann Occup Hyg 31:731–43
  • Stanton M, Layard M, Tegeris A, et al. (1977). Carcinogenicity of fibrous glass: pleural response in the rat in relation to fiber dimension. J Natl Cancer Inst 58:587–97
  • Stayner LT, Kuempel E, Gilbert S, et al. (2007). An epidemiologic study of the roll of chrysotile asbestos fiber dimensions in determining respiratory disease risk in exposed workers. Occup Environ Med 65:613–19
  • Suzuki Y. (2001). Pathology of human malignant mesothelioma. Ind Health 39:183–5
  • Thermal Insulation Manufacturers Association (TIMA) Nomenclature Committee. (1993). Man-made vitreous fibers: nomenclature, chemical and physical properties. Refractory Ceramic Fibers Coalition (RCFC), 1133 Connecticut Avenue, NW, Suite 1200, Washington, DC
  • Trethowan WN, Burge PS, Rossiter CE, et al. (1995). Study of the respiratory health of employees in seven European plants that manufacture ceramic fibers. Occup Environ Med 52:97–104
  • Utell MJ, Maxim LD. (2010). Refractory ceramic fiber (RCF) toxicity and epidemiology: a review. Inhal Toxicol 22:500–21
  • Verma DK, Clark NE. (1995). Relationship between phase contrast microscopy and transmission electron microscopy results of samples from occupational exposure to airborne chrysotile asbestos. Am Ind Hyg J 56:866–73
  • Walker AM, Maxim LD, Utell M. (2012a). Are airborne refractory ceramic fibers similar to asbestos in their carcinogenicity? Inhal Toxicol 24:416–24
  • Walker AM, Maxim LD, Utell M. (2012b). Corigendum. Are airborne refractory ceramic fibers similar to asbestos in their carcinogenicity? Inhal Toxicol 24:928–9
  • Walker AM, Maxim LD, Utell M. (2002). Risk analysis for mortality from respiratory tumors in a cohort of refractory ceramic fiber workers. Regul Toxicol Pharm 35:95–104
  • Warheit DB, Hartsky MA. (1994). Influences of gender, species, and strain differences in pulmonary toxicological assessments of inhaled particles and/or fibers. In: Mohr U, Dungworth DL, Mauderly JL, Oberdörster G. (eds.) Toxic and carcinogenic effects of solid particles in the respiratory tract. Washington, DC: International Life Sciences Institute (ILSI) Press, 253–65
  • Weill H, Hughes AM, Churg AM. (2004). Changing trends in US mesothelioma incidence. Occup Environ Med 61:438–41
  • Wong O, Foliart D, Trent LS. (1991). A case–control study of lung cancer in a cohort of workers potentially exposed to slag wool fibres. Br J Ind Med 48:818–24
  • Yamaya M, Nakayama K, Hosoda M, et al. (2000). A rockwool fibre worker with lung fibrosis. Lancet 355:1723–4
  • Yates DH, Corrin B, Stidolph PN, Browne K. (1997). Malignant mesothelioma in south east England: clinicopathological experience of 272 cases. Thorax 52:507–12
  • Yeung P, Rogers A, Johnson A. (1999). Distribution of mesothelioma cases in different occupational groups and industries in Australia, 1979–1995. Appl Occup Environ Hyg 14:759–67