88
Views
40
CrossRef citations to date
0
Altmetric
Original Article

Characterization of the EphA1 Receptor Tyrosine Kinase: Expression in Epithelial Tissues

, , , , , , , & show all
Pages 303-317 | Received 18 Dec 2000, Published online: 11 Jul 2009

References

  • Boyd A. W, Ward L. D, Wicks I. P, Simpson R. J, Salvaris E. E., Wilks A., Welch K., Loudovaris M., Rockman S., Busmanis I. Isolation and characterization of a novel receptor-type protein tyrosine kinase (hek) from a human pre-B cell line. J. of Biol. Chem. 1992; 267: 3262–3267
  • Bruce V., Olivieri G., Eickelberg O., Miescher G. C. Functional activation of EphAS receptor does not promote cell proliferation in the aberrant EphA5 expressing human glioblastoma U-118 MG cell line. Brain Res. 1999; 821: 169–176
  • Connor R. J, Pasquale E. B. Genomic organization and alternatively processed forms of Cek5, a receptor protein-tyrosine kinase of the Eph subfamily. Oncogene 1995; 11: 2429–2438
  • Davis S., Gale N. W, Aldrich T. H, Maisonpierre P. C, Lhotak V., Pawson T., Goldfarb M., Yancopoulos G. D. Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science 1994; 266: 816–819
  • Doetschman T. C, Eistetter H., Katz M., Schmidt W., Kemler R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 1985; 87: 27–45
  • Dottori M., Hartley L., Galea M., Paxinos G., Polizzotto M., Kilpatrick T., Bartlett P. P, Murphy M., Kontgen F., Boyd A. W. EphA4 (Sekl) receptor tyrosine kinase is required for the development of the corticospinal tract. Proc. Natl. Acad. Sci. U.S.A. 1998; 95: 13248–13253
  • Easty D. J, Guthrie B. A, Maung K., Farr C. J, Lind-Berg R. A., Toso R. J, Herlyn M., Bennett D. C. Protein B61 as a new growth factor: expression of B61 and up-regulation of its receptor epithelial cell kinase during melanoma progression. Cancer Res. 1995; 55: 2528–2532
  • Easty D. J, Hill S. P, Hsu M. Y, Fallowfield M. E, Florenes V. A, Herlyn M., Bennett D. C. Up-regulation of ephrin-Al during melanoma progression. Int. J. Cancer 1999; 84: 494–501
  • Elliott R. W., Moore K. J. Mouse chromosome 6. Mamm. Genome 1994; 79–103
  • Ellis C., Kasmi F., Ganju P., Walls E., Panayotou G., Reith A. D. A juxtamembrane autophosphorylation site in the Eph family receptor tyrosine kinase, Sek, mediates high affinity interaction with p59fyn. Oncogene 1996; 12: 1727–1736
  • Evans E. P. Genetic Variants and Strains of the Laboratory Mouse, M. P. Lyon, A. Searle. Oxford University Press, Oxford 1989; 576–577
  • Frisen J., Holmberg J., Barbacid M. Ephrins and their Eph receptors: multitalented directors of embryonic development. EMBO J. 1999; 18: 5159–5165
  • Gale N. W, Holland S. J, Valenzuela D. M, Flenniken A., Pan L., Ryan I. E, Hirai H., Wilkinson D. G, Pawson T., Davis S., Yancopoulos G. D. EPH Receptors and Ligands Comprise Two Major Specificity Subclasses and are Reciprocally Compartmentalized during Embryogenesis. Neuron 1996; 17: 9–19
  • Gerety S. S, Wang H. U, Chen Z. F, Anderson D. J. Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development [In Process Citation]. Mol. Cell 1999; 4: 403–414
  • Hanks S. K, Quinn A. M, Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 1988; 241: 42–52
  • Himanen J. P, Henkemeyer M., Nikolov D. B. Crystal structure of the ligand-binding domain of the receptor tyrosine kinase EphB2. Nature 1998; 396: 486–491
  • Hirai H., Maru Y., Hagiwara K., Nishida J., Takaku F. A novel putative tyrosine kinase receptor encoded by the eph gene. Science 1987; 238: 1717–1720
  • Hock B., Bohme B., Karn T., Feller S., Rubsamen-Waigmann H., Strebhardt K. Tyrosine-614, the major autophosphorylation site of the receptor tyrosine kinase HEK2, functions as multi-docking site for SH2-domain mediated interactions. Oncogene 1998; 17: 255–260
  • Holder N., Klein R. Eph receptors and ephrins: effectors of morphogenesis. Development 1999; 126: 2033–2044
  • Holland S. J, Gale N. W, Gish G. D, Roth R. A, Song Z. Yang, Cantley L. C, Henkemeyer M., Yancopoulos G. D, Pawson T. Juxtamembrane tyrosine residues couple the Eph family receptor EphB2/Nuk to specific SH2 domain proteins in neuronal cells. EMBO J. 1997; 16: 3877–3888
  • Kiyokawa E., Takai S., Tanaka M., Iwase T., Suzuki M., Xiang Y. Y, Naito Y., Yamada K., Sugimura H., Kino I. Overexpression of ERK, an EPH family receptor protein tyrosine kinase, in various human tumors. Cancer Res. 1994; 54: 3645–3650
  • Kozak M. The scanning model for translation: an update. Mol. Cell Biol. 1989; 9: 229–241
  • Labrador J. P, Brambilla R., Klein R. The N-terminal globular domain of Eph receptors is sufficient for ligand binding and receptor signaling. EMBO J. 1997; 16: 3889–3897
  • Lackmann M., Bucci T., Mann R. J, Kravets L. A, Viney E., Smith F., Moritz R. L, Carter W., Simpson R. J, Nicola N. A, Mackwell K., Nice E. C, Wilks A. F, Boyd A. W. Purification of a ligand for the EPH-like receptor HEK using a biosensor-based affinity detection approach. Proc. Natl. Acad. Sci. U.S.A. 1996; 93: 2523–2527
  • Lackmann M., Mann R. J, Kravets L., Smith F. M, Bucci T. A, Maxwell K. F, Howlett G. J, Olsson J. E, Vanden Bos T., Cerretti D. P, Boyd A. W. Ligand for EPH-related kinase (LERK) 7 is the preferred high affinity ligand for the HEK receptor. J. Biol. Chem. 1997; 272: 16521–16530
  • Lackmann M., Oates A. C, Dottori M., Smith P. M, Do C., Power M., Kravets L., Boyd A. W. Distinct sub-domains of the EphA3 receptor mediate ligand binding and receptor dimerization. J. Biol. Chem. 1998; 273: 20228–20237
  • Lemke G. A Coherent Nomenclature for Eph Receptors and Their Ligands. Mol. Cell Neurosci. 1997; 9: 331–332
  • Lemke G. Eph receptors and ligands in axon pathway choice, target recognition, and synaptogenesis. Prog. Brain Res. 1998; 117: 171–176
  • Lickliter J. D, Smith F. M, Olsson J. E, Mackwell K. L, Boyd A. W. Embryonic stem cells express multiple Eph-subfamily receptor tyrosine kinases. Proc. Natl. Acad. Sci. U.S.A. 1996; 93: 145–150
  • Lindberg R. A, Hunter T. cDNA cloning and characterization of eck, an epithelial cell receptor protein-tyrosine kinase in the eph/elk family of protein kinases. Mol. Cell Biol. 1990; 10: 6316–6324
  • Maru Y., Hirai H., Takaku F. Overexpression confers an oncogenic potential upon the eph gene. Oncogene 1990; 5: 445–447
  • Maru Y., Hirai H., Yoshida M. C, Takaku F. Evolution, expression, and chromosomal location of a novel receptor tyrosine kinase gene, eph. Mol. Cell. Biol. 1988; 8: 3770–3776
  • Miao H., Burnett E., Kinch M., Simon E., Wang B. Activation of EphA2 kinase suppresses integrin function and causes focal-adhesion-kinase dephosphorylation. Nat. Cell Biol. 2000; 2: 62–69
  • Mizushima S., Nagata S. pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res. 1990; 18: 5322
  • Nesbitt M. N., Francke U. A system of nomenclature for band patterns of mouse chromosomes. Chromosoma 1973; 41(2)145–158
  • Oates A. C, Lackmann M., Power M. A, Brennan C., Smith F. M, Do C., Evans B., Holder N., Boyd A. W. An early developmental role for eph-ephrin interaction during vertebrate gastrulation. Mech. Dev. 1999; 83: 77–94
  • O'Leary D. D., Wilkinson D. G. Eph receptors and ephrins in neural development. Curr. Opin. Neurobiol. 1999; 9: 65–73
  • Owshalimpur D., Kelley M. J. Genomic structure of the EPHA1 receptor tyrosine kinase gene. Mol. Cell Probes 1999; 13: 169–173
  • Patthy L. Intron-dependent evolution: preferred types of exons and introns. FEBS Lett. 1987; 214: 1–7
  • Robinson D., He F., Pretlow T., Kung H. J. A tyrosine kinase profile of prostate carcinoma. Proc. Natl. Acad. Sci. U.S.A. 1996; 93: 5958–5962
  • Rosen B., Beddington R. S. Whole-mount in situ hybridization in the mouse embryo: gene expression in three dimensions. Trends Genet 1993; 9: 162–167
  • Sambrook J., Fritsch E. F., Manniatis T. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY 1989
  • Schultz J., Ponting C. P, Hofmann K., Bork P. SAM as a protein interaction domain involved in developmental regulation. Protein Science 1997; 6: 249–253
  • Shen M. M, Leder P. Leukemia inhibitory factor is expressed by the preimplantation uterus and selectively blocks primitive ectoderm formation in vitro. Proc. Natl. Acad. Sci. U.S.A. 1992; 89: 8240–8244
  • Stapleton D., Balan I., Pawson T., Sicheri F. The crystal structure of an Eph receptor SAM domain reveals a mechanism for modular dimerization. Nat. Struct. Biol. 1999; 6: 44–49
  • Stein E., Cerretti D. P, Daniel T. O. Ligand activation of ELK receptor tyrosine kinase promotes its association with Grb10 and Grb2 in vascular endothelial cells. J. of Biol. Chem. 1996; 271: 23588–23593
  • Stein E., Lane A. A, Cerretti D. P, Schoecklmann H. O, Schroff A. D, Van Etten R. L, Daniel T. O. Eph receptors discriminate specific ligand oligomers to determine alternative signaling complexes, attachment, and assembly responses. Genes Dev. 1998; 12: 667–678
  • Steube K. G, Meyer C., Habig S., Uphoff C. C, Drexler H. G. Expression of receptor tyrosine kinase HTK (hepatoma transmembrane kinase) and HTK ligand by human leukemia-lymphoma cell lines. Leuk. Lymphoma 1999; 33: 371–376
  • Sulman E. P, Tang X. X, Allen C., Biegel J. A, Pleasure D. E, Brodeur G. M, Ikegaki N. ECK, a human EPH-related gene, maps to Ip36.1, a common region of alteration in human cancers. Genomics 1997; 40: 371–374
  • Tang X. X, Brodeur G. M, Campling B. G, Ikegaki N. Coexpression of transcripts encoding EPHB receptor protein tyrosine kinases and their ephrin-B ligands in human small cell lung carcinoma. Clin. Cancer Res. 1999a; 5: 455–460
  • Tang X. X, Evans A. E, Zhao H., Cnaan A., London W., Cohn S. L, Brodeur G. M, Ikegaki N. High-level expression of EPHB6, EFNB2, and EFNB3 is associated with low tumor stage and high TrkA expression in human neuroblastomas. Clin. Cancer Res. 1999b; 5: 1491–1496
  • Torres R., Firestein B. L, Dong H., Staudinger J., Olson E. N, Huganir R. L, Bredt D. S, Gale N. W, Yancopoulos G. D. PDZ proteins bind, cluster, and synaptically colocalize with Eph receptors and their ephrin ligands [see comments]. Neuron 1998; 21: 1453–1463
  • Tsui L. C, Farrall M., Donis-Keller H. Report of the committee on the genetic constitution of chromosomes 7 and 8. Cytogenet. Cell Genet. 1989; 51: 166–201
  • van Ewijk W. T-cell differentiation is influenced by thymic microenvironments. Annu. Rev. Immunol. 1991; 9: 591–615
  • Vogt T., Stolz W., Welsh J., Jung B., Kerbel R. S, Kobayashi H., Landthaler M., McClelland M. Overexpression of Lerk-5/Eplg5 messenger RNA: a novel marker for increased tumorigenicity and metastatic potential in human malignant melanomas. Clin. Cancer Res. 1998; 4: 791–797
  • von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986; 14: 4683–4690
  • Wang H. U, Chen Z. F, Anderson D. J. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4 [see comments]. Cell 1998; 93: 741–753
  • Webb G. C, Lee J. S, Campbell H. D, Young I. G. The genes for interleukins 3 and 5 map to the same locus on mouse chromosome 11. Cytogenet. Cell Genet. 1989; 50: 107–110
  • Wicks I. P, Lapsys N. M, Baker E., Campbell L. J, Boyd A. W, Sutherland G. R. Localization of a human receptor tyrosine kinase (ETK1) to chromosome region 3p11.2. Genomics 1994; 19: 38–41
  • Wicks I. P, Wilkinson D., Salvaris E., Boyd A. W. Molecular cloning of HEK, the gene encoding a receptor tyrosine kinase expressed by human lymphoid tumor cell lines. Proc. Natl. Acad. Sci. U.S.A. 1992; 89: 1611–1615
  • Wiles M. V. Embryonic stem cell differentiation in vitro. Methods Enzymol. 1993; 225: 900–918
  • Wilkinson D. G. Eph receptors and ephrins: regulators of guidance and assembly [In Process Citation]. Int. Rev. Cytol. 2000; 196: 177–244
  • Winning R. S, Scales J. B, Sargent T. D. Disruption of cell adhesion in Xenopus embryos by Pagliaccio, an Eph-class receptor tyrosine kinase. Dev. Biol. 1996; 179: 309–319
  • Zetter B. R. Adhesion molecules in tumor metastasis [see comments]. Semin. Cancer Biol. 1993; 4: 219–229
  • Zisch A. H, Kalo M. S, Chong L. D, Pasquale E. B. Complex formation between EphB2 and Src requires phosphorylation of tyrosine 611 in the EphB2 juxtamembrane region. Oncogene 1998; 16: 2657–2670
  • Zou J. X, Wang B., Kalo M. S, Zisch A. H, Pasquale E. B, Ruoslahti E. An Eph receptor regulates integrin activity through R-Ras. Proc. Natl. Acad. Sci. U.S.A. 1999; 96: 13813–13818

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.