491
Views
48
CrossRef citations to date
0
Altmetric
Research Paper

Exendin-4 attenuates renal tubular injury by decreasing oxidative stress and inflammation in streptozotocin-induced diabetic mice

, &
Pages 419-429 | Received 23 Jul 2015, Accepted 23 Nov 2015, Published online: 05 Jan 2016

References

  • Abu-Hamdah R, Rabiee A, Meneilly GS, Shannon RP, Andersen DK, Elahi D. 2009. Clinical review: The extrapancreatic effects of glucagon-like peptide-1 and related peptides. J Clin Endocrinol Metab 94:1843–1852
  • Arakawa M, Mita T, Azuma K, Ebato C, Goto H, Nomiyama T, Fujitani Y, et al. 2010. Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4. Diabetes 59:1030–1037
  • Bullock BP, Heller RS, Habener JF. 1996. Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor. Endocrinology 137:2968–2978
  • Choi JB, Uchino H, Azuma K, Iwashita N, Tanaka Y, Mochizuki H, Migita M, et al. 2003. Little evidence of transdifferentiation of bone marrow-derived cells into pancreatic beta cells. Diabetologia 46:1366–1374
  • Chow FY, Nikolic-Paterson DJ, Ozols E, Atkins RC, Rollin BJ, Tesch GH. 2006. Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice. Kidney Int 69:73–80
  • Chow FY, Nikolic-Paterson DJ, Ozols E, Atkins RC, Tesch GH. 2005. Intercellular adhesion molecule-1 deficiency is protective against nephropathy in type 2 diabetic db/db mice. J Am Soc Nephrol 16:1711–1722
  • Cooper ME. 1998. Pathogenesis, prevention, and treatment of diabetic nephropathy. Lancet 352:213–219
  • Crajoinas RO, Oricchio FT, Pessoa TD, Pacheco BP, Lessa LM, Malnic G, Girardi AC. 2011. Mechanisms mediating the diuretic and natriuretic actions of the incretin hormone glucagon-like peptide-1. Am J Physiol Renal Physiol 301:F355–F363
  • DiPetrillo K, Coutermarsh B, Gesek FA. 2003. Urinary tumor necrosis factor contributes to sodium retention and renal hypertrophy during diabetes. Am J Physiol Renal Physiol 284:F113–F121
  • Dorecka M, Siemianowicz K, Francuz T, Garczorz W, Chyra A, Klych A, Romaniuk W. 2013. Exendin-4 and GLP-1 decreases induced expression of ICAM-1, VCAM-1 and RAGE in human retinal pigment epithelial cells. Pharmacol Rep 65:884–890
  • Doyle ME, Egan JM. 2007. Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther 113:546–593
  • Drucker DJ. 2006. The biology of incretin hormones. Cell Metab 3:153–165
  • Eddy AA. 2000. Molecular basis of renal fibrosis. Pediatr Nephrol 15:290–301
  • Etoh T, Inoguchi T, Kakimoto M, Sonoda N, Kobayashi K, Kuroda J, Sumimoto H, Nawata H. 2003. Increased expression of NAD(P)H oxidase subunits, NOX4 and p22phox, in the kidney of streptozotocin-induced diabetic rats and its reversibity by interventive insulin treatment. Diabetologia 46:1428–1437
  • Fekete A, Rosta K, Wagner L, Prokai A, Degrell P, Ruzicska E, Vegh E, et al. 2008. Na+, K+-ATPase is modulated by angiotensin II in diabetic rat kidney-another reason for diabetic nephropathy? J Physiol (Lond) 586:5337–5348
  • Gezginci-Oktayoglu S, Bolkent S. 2009. Exendin-4 exerts its effects through the NGF/p75NTR system in diabetic mouse pancreas. Biochem Cell Biol 87:641–651
  • Gezginci-Oktayoglu S, Tunali S, Yanardag R, Bolkent S. 2008. Effects of Z-FA.FMK on D-galactosamine/tumor necrosis factor-alpha-induced kidney injury and oxidative stress in mice: Effects of Z-FA.FMK on TNF-alpha-mediated kidney injury. Mol Cell Biochem 309:9–20
  • Gilbert RE, Cooper ME. 1999. The tubulointerstitium in progressive diabetic kidney disease: More than an aftermath of glomerular injury? Kidney Int 56:1627–1637
  • Gorin Y, Block K, Hernandez J, Bhandari B, Wagner B, Barnes JL, Abboud HE. 2005. Nox4 NAD(P)H oxidase mediates hypertrophy and fibronectin expression in the diabetic kidney. J Biol Chem 280:39616–39626
  • Göke R, Fehmann HC, Linn T, Schmidt H, Krause M, Eng J, Göke B. 1993. Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-secreting beta-cells. J Biol Chem 268:19650–19655
  • Greig NH, Holloway HW, De Ore KA, Jani D, Wang Y, Zhou J, Garant MJ, Egan JM. 1999. Once daily injection of exendin-4 to diabetic mice achieves long-term beneficial effects on blood glucose concentrations. Diabetologia 42:45–50
  • Gu HF, Ma J, Gu KT, Brismar K. 2013. Association of intercellular adhesion molecule 1 (ICAM1) with diabetes and diabetic nephropathy. Front Endocrinol (Lausanne) 3:179
  • Hasegawa G, Nakano K, Sawada M, Uno K, Shibayama Y, Ienaga K, Kondo M. 1991. Possible role of tumor necrosis factor and interleukin-1 in the development of diabetic nephropathy. Kidney Int 40:1007–1012
  • Hendarto H, Inoguchi T, Maeda Y, Ikeda N, Zheng J, Takei R, Yokomizo H, et al. 2012. GLP-1 analog liraglutide protects against oxidative stress and albuminuria in streptozotocin-induced diabetic rats via protein kinase A-mediated inhibition of renal NAD(P)H oxidases. Metab Clin Exp 61:1422–1434
  • Hoffman BB, Sharma K, Ziyadeh FN. 1998. Potential role of TGF-beta in diabetic nephropathy. Miner Electrolyte Metab 24:190–196
  • Hovind P, Rossing P, Tarnow L, Smidt UM, Parving HH. 2001. Progression of diabetic nephropathy. Kidney Int 59:702–709
  • Ina K, Kitamura H, Okeda T, Nagai K, Liu ZY, Matsuda M, Fujikura Y. 1999. Vascular cell adhesion molecule-1 expression in the renal interstitium of diabetic KKAy mice. Diabetes Res Clin Pract 44:8
  • Ishibashi Y, Matsui T, Takeuchi M, Yamagishi S. 2010. Glucagon-like peptide-1 (GLP-1) inhibits advanced glycation end product (AGE)-induced up-regulation of VCAM-1 mRNA levels in endothelial cells by suppressing AGE receptor (RAGE) expression. Biochem Biophys Res Commun 391:1405–1408
  • Ishikura H, Takahashi C, Kanagawa K, Hirata H, Imai K, Yoshiki T. 1991. Cytokine regulation of ICAM-1 expression on human renal tubular epithelial cells in vitro. Transplantation 51:1272–1275
  • Isogai M, Yamaguchi A, Hori A, Kaneoka Y. 1998. LDH to AST ratio in biliary pancreatitis – a possible indicator of pancreatic necrosis: Preliminary results. Am J Gastroenterol 93:363–367
  • Jones SC, Saunders HJ, Pollock CA. 1999. High glucose increases growth and collagen synthesis in cultured human tubulointerstitial cells. Diabet Med 16:932–938
  • Kim JD, McCarter RJ, Yu BP. 1996. Influence of age, exercise, and dietary restriction on oxidative stress in rats. Aging 8:123–129
  • Kodera R, Shikata K, Kataoka HU, Takatsuka T, Miyamoto S, Sasaki M, Kajitani N, et al. 2011. Glucagon-like peptide-1 receptor agonist ameliorates renal injury through its anti-inflammatory action without lowering blood glucose level in a rat model of type 1 diabetes. Diabetologia 54:965–978
  • Kodera R, Shikata K, Takatsuka T, Oda K, Miyamoto S, Kajitani N, Hirota D, et al. 2014. Dipeptidyl peptidase-4 inhibitor ameliorates early renal injury through its anti-inflammatory action in a rat model of type 1 diabetes. Biochem Biophys Res Commun 443:828–833
  • Kosugi T, Nakayama T, Heinig M, Zhang L, Yuzawa Y, Sanchez-Lozada LG, Roncal C, et al. 2009. Effect of lowering uric acid on renal disease in the type 2 diabetic db/db mice. Am J Physiol Renal Physiol 297:F481–F488
  • Körner M, Stöckli M, Waser B, Reubi JC. 2007. GLP-1 receptor expression in human tumors and human normal tissues: Potential for in vivo targeting. J Nucl Med 48:736–743
  • Lebel CP, Bondy SC. 1990. Sensitive and rapid quantitation of oxygen reactive species formation in rat synaptosomes. Neurochem Int 17:435–440
  • Ledwozyw A, Michalak J, Stepien A, Kadziolka A. 1986. The relationship between plasma triglycerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis. Clin Chim Acta 155:275–283
  • Lim AK, Tesch GH. 2012. Inflammation in diabetic nephropathy. Mediators Inflamm 2012:146154
  • Linardi A, Rocha e Silva TA, Miyabara EH, Franco-Penteado CF, Cardoso KC, Boer PA, Moriscot AS, et al. 2011. Histological and functional renal alterations caused by Bothrops alternatus snake venom: Expression and activity of Na+/K+-ATPase. Biochim Biophys Acta 1810:895–906
  • Navarro JF, Milena FJ, Mora C, León C, Claverie F, Flores C, García J. 2005. Tumor necrosis factor-alpha gene expression in diabetic nephropathy: Relationship with urinary albumin excretion and effect of angiotensin-converting enzyme inhibition. Kidney Int Suppl 99:S98–S102
  • Navarro JF, Milena FJ, Mora C, León C, García J. 2006. Renal pro-inflammatory cytokine gene expression in diabetic nephropathy: Effect of angiotensin-converting enzyme inhibition and pentoxifylline administration. Am J Nephrol 26:562–570
  • Navarro JF, Mora C. 2005. Role of inflammation in diabetic complications. Nephrol Dial Transplant 20:2601–2604
  • Navarro-González JF, Mora-Fernández C, Muros de Fuentes M, García-Pérez J. 2011. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol 7:327–340
  • Ollivier V, Parry GC, Cobb RR, de Prost D, Mackman N. 1996. Elevated cyclic AMP inhibits NF-kappaB-mediated transcription in human monocytic cells and endothelial cells. J Biol Chem 271:20828–20835
  • Park CW, Kim HW, Ko SH, Lim JH, Ryu GR, Chung HW, Han SW, et al. 2007. Long-term treatment of glucagon-like peptide-1 analog exendin-4 ameliorates diabetic nephropathy through improving metabolic anomalies in db/db mice. J Am Soc Nephrol 218:1227–1238
  • Phillips AO, Topley N, Steadman R, Morrisey K, Williams JD. 1996. Induction of TGF-beta 1 synthesis in D-glucose primed human proximal tubular cells by IL-1 beta and TNF alpha. Kidney Int 50:1546–1554
  • Reutens AT, Atkins RC. 2011. Epidemiology of diabetic nephropathy. Contrib Nephrol 170:1–7
  • Ridderstap AS, Bonting SL. 1969. Na+-/K+-activated ATPase anc exocrine pancreatic secretion in vitro. Am J Physiol 217:1721–1727
  • Rossing P. 2006. Diabetic nephropathy: Worldwide epidemic and effects of current treatment on natural history. Curr Diab Rep 6:479–483
  • Ruster C, Wolf G. 2008. The role of chemokines and chemokine receptors in diabetic nephropathy. Front Biosci 13:944–955
  • Sai Varsha MK, Raman T, Manikandan R, Dhanasekaran G. 2015. Hypoglycemic action of vitamin K1 protects against early-onset diabetic nephropathy in streptozotocin-induced rats. Nutrition 31:1284–1292
  • Sassy-Prigent C, Heudes D, Mandet C, Bélair MF, Michel O, Perdereau B, Bariéty J, Bruneval P. 2000. Early glomerular macrophage recruitment in streptozotocin-induced diabetic rats. Diabetes 49:466–475
  • Schlatter P, Beglinger C, Drewe J, Gutmann H. 2007. Glucagon-like peptide 1 receptor expression in primary porcine proximal tubular cells. Regul Pept 141:120–128
  • Schreiner GF, Kohan DE. 1990. Regulation of renal transport processes and hemodynamics by macrophages and lymphocytes. Am J Physiol 258:F761–F767
  • Shah IM, Mackay SP, McKay GA. 2009. Therapeutic strategies in the treatment of diabetic nephropathy – A translational medicine approach. Curr Med Chem 16:997–1016
  • Sharma K, Ziyadeh FN, Alzahabi B, McGowan TA, Kapoor S, Kurnik BR, Kurnik PB, Weisberg LS. 1997. Increased renal production of transforming growth factor-beta1 in patients with type II diabetes. Diabetes 46:854–859
  • Shikata K, Makino H. 2013. Microinflammation in the pathogenesis of diabetic nephropathy. J Diabetes Investig 4:142–149
  • Sugimoto H, Shikata K, Hirata K, Akiyama K, Matsuda M, Kushiro M, Shikata Y, et al. 1997. Increased expression of intercellular adhesion molecule-1 (ICAM-1) in diabetic rat glomeruli: Glomerular hyperfiltration is a potential mechanism of ICAM-1 upregulation. Diabetes 46:2075–2081
  • Tesch GH. 2008. MCP-1/CCL2: A new diagnostic marker and therapeutic target for progressive renal injury in diabetic nephropathy. Am J Physiol Renal Physiol 294:F697–F701
  • Vidotti DB, Arnoni CP, Maquigussa E, Boim MA. 2008. Effect of long-term type 1 diabetes on renal sodium and water transporters in rats. Am J Nephrol 28:107–114
  • Viedt C, Dechend R, Fei J, Hänsch GM, Kreuzer J, Orth SR. 2002. MCP-1 induces inflammatory activation of human tubular epithelial cells: Involvement of the transcription factors, nuclear factor-kappaB and activating protein-1. J Am Soc Nephrol 13:1534–1547
  • Wassef L, Kelly DJ, Gilbert RE. 2004. Epidermal growth factor receptor inhibition attenuates early kidney enlargement in experimental diabetes. Kidney Int 66:1805–1814
  • Wu Y, Wu G, Qi X, Lin H, Qian H, Shen J, Lin S. 2006. Protein kinase C beta inhibitor LY333531 attenuates intercellular adhesion molecule-1 and monocyte chemotactic protein-1 expression in the kidney in diabetic rats. J Pharmacol Sci 101:335–343
  • Yamamoto T, Nakamura T, Noble NA, Ruoslahti E, Border WA. 1993. Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy. Proc Natl Acad Sci USA 90:1814–1818
  • Yang CW, Vlassara H, Peten EP, He CJ, Striker GE, Striker LJ. 1994. Advanced glycation end products up-regulate gene expression found in diabetic glomerular disease. Proc Natl Acad Sci USA 91:9436–9440
  • Young AA, Gedulin BR, Bhavsar S, Bodkin N, Jodka C, Hansen B, Denaro M. 1999. Glucose-lowering and insulin-sensitizing actions of exendin-4: Studies in obese diabetic (ob/ob, db/db) mice, diabetic fatty Zucker rats, and diabetic rhesus monkeys (Macaca mulatta). Diabetes 48:1026–1034
  • Young BA, Johnson RJ, Alpers CE, Eng E, Gordon K, Floege J, Couser WG, Seidel K. 1995. Cellular events in the evolution of experimental diabetic nephropathy. Kidney Int 47:935–944
  • Zager RA, Johnson AC, Becker K. 2013. Renal cortical lactate dehydrogenase: A useful, accurate, quantitative marker of in vivo tubular injury and acute renal failure. PLoS One 8:e66776
  • Ziyadeh FN, Sharma K, Ericksen M, Wolf G. 1994. Stimulation of collagen gene expression and protein synthesis in murine mesangial cells by high glucose is mediated by autocrine activation of transforming growth factor-beta. J Clin Invest 93:536–542

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.