186
Views
14
CrossRef citations to date
0
Altmetric
Research Paper

Angiotensin-(1-7) attenuated long-term hypoxia-stimulated cardiomyocyte apoptosis by inhibiting HIF-1α nuclear translocation via Mas receptor regulation

, , , , , , , , & show all
Pages 11-18 | Received 19 Nov 2015, Accepted 14 Feb 2016, Published online: 08 Apr 2016

References

  • Campo G, Pavasini R, Malagu M, Mascetti S, Biscaglia S, Ceconi C, Papi A, Contoli M. 2015. Chronic obstructive pulmonary disease and ischemic heart disease comorbidity: Overview of mechanisms and clinical management. Cardiovasc Drugs Ther 29:147–157
  • Castro CH, Santos RA, Ferreira AJ, Bader M, Alenina N, Almeida AP. 2006. Effects of genetic deletion of angiotensin-(1-7) receptor Mas on cardiac function during ischemia/reperfusion in the isolated perfused mouse heart. Life Sci 80:264–268
  • Chang RL, Lin JW, Hsieh DJ, Yeh YL, Shen CY, Day CH, Ho TJ, et al. 2015. Long-term hypoxia exposure enhanced IGFBP-3 protein synthesis and secretion resulting in cell apoptosis in H9c2 myocardial cells. Growth Factors 33:275–281
  • Chen Z, Tang Y, Yang Z, Liu S, Liu Y, Li Y, He W. 2013. Endothelin-1 downregulates Mas receptor expression in human cardiomyocytes. Mol Med Rep 8:871–876
  • Chen LM, Kuo WW, Yang JJ, Wang SG, Yeh YL, Tsai FJ, Ho YJ, et al. 2007. Eccentric cardiac hypertrophy was induced by long-term intermittent hypoxia in rats. Exp Physiol 92:409–416
  • De Mello WC. 2014. Angiotensin (1-7) re-establishes heart cell communication previously impaired by cell swelling: Implications for myocardial ischemia. Exp Cell Res 323:359–365
  • de Almeida PW, de Freitas Lima R, de Morais Gomes ER, Rocha-Resende C, Roman-Campos D, Gondim AN, Gavioli M, et al. 2013. Functional cross-talk between aldosterone and angiotensin-(1-7) in ventricular myocytes. Hypertension 61:425–430
  • Ferreira AJ, Santos RA, Almeida AP. 2001. Angiotensin-(1-7): Cardioprotective effect in myocardial ischemia/reperfusion. Hypertension 38:665–668
  • Flores-Munoz M, Godinho BM, Almalik A, Nicklin SA. 2012. Adenoviral delivery of angiotensin-(1-7) or angiotensin-(1-9) inhibits cardiomyocyte hypertrophy via the mas or angiotensin type 2 receptor. PLoS One 7:e45564
  • Gaber T, Dziurla R, Tripmacher R, Burmester GR, Buttgereit F. 2005. Hypoxia inducible factor (HIF) in rheumatology: Low O2! See what HIF can do! Ann Rheum Dis 64:971–980
  • Gallagher PE, Ferrario CM, Tallant EA. 2008. Regulation of ACE2 in cardiac myocytes and fibroblasts. Am J Physiol Heart Circ Physiol 295:H2373–H2379
  • Giani JF, Burghi V, Veiras LC, Tomat A, Munoz MC, Cao G, Turyn D, et al. 2012. Angiotensin-(1-7) attenuates diabetic nephropathy in Zucker diabetic fatty rats. Am J Physiol Renal Physiol 302:F1606–F1615
  • Gironacci MM. 2015. Angiotensin-(1-7): Beyond its central effects on blood pressure. Ther Adv Cardiovasc Dis 9:209–216
  • Gomes ER, Santos RA, Guatimosim S. 2012. Angiotensin-(1-7)-mediated signaling in cardiomyocytes. Int J Hypertens 2012:493129
  • Gomes ER, Lara AA, Almeida PW, Guimaraes D, Resende RR, Campagnole-Santos MJ, Bader M, et al. 2010. Angiotensin-(1-7) prevents cardiomyocyte pathological remodeling through a nitric oxide/guanosine 3′,5′-cyclic monophosphate-dependent pathway. Hypertension 55:153–160
  • Grobe JL, Mecca AP, Mao H, Katovich MJ. 2006. Chronic angiotensin-(1-7) prevents cardiac fibrosis in DOCA-salt model of hypertension. Am J Physiol Heart Circ Physiol 290:H2417–H2423
  • Harris AL. 2002. Hypoxia – a key regulatory factor in tumour growth. A regulatory in growth. Nat Rev Cancer 2:38–47
  • Hernandez JS, Barreto-Torres G, Kuznetsov AV, Khuchua Z, Javadov S. 2014. Crosstalk between AMPK activation and angiotensin II-induced hypertrophy in cardiomyocytes: The role of mitochondria. J Cell Mol Med 18:709–720
  • Hsieh DJ, Huang CY, Pai P, Wang SG, Tsai YL, Li CN, Kuo WW, Huang CY. 2015. Prolactin protects cardiomyocytes against intermittent hypoxia-induced cell damage by the modulation of signaling pathways related to cardiac hypertrophy and proliferation. Int J Cardiol 181:255–266
  • Hsieh SR, Cheng WC, Su YM, Chiu CH, Liou YM. 2014. Molecular targets for anti-oxidative protection of green tea polyphenols against myocardial ischemic injury. Biomedicine 4:23 doi: 10.7603/s40681-014-0023-0
  • Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, et al. 1998. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 12:149–162
  • Kim SM, Kim YG, Jeong KH, Lee SH, Lee TW, Ihm CG, Moon JY. 2012. Angiotensin II-induced mitochondrial Nox4 is a major endogenous source of oxidative stress in kidney tubular cells. PLoS One 7:e39739
  • Kuo C-Y, Chiu Y-C, Lee AY-L, Hwang T-L. 2015. Mitochondrial Lon protease controls ROS-dependent apoptosis in cardiomyocyte under hypoxia. Mitochondrion 23:7–16
  • Lee SH, Wolf PL, Escudero R, Deutsch R, Jamieson SW, Thistlethwaite PA. 2000. Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N Engl J Med 342:626–633
  • Lee SD, Kuo WW, Lin JA, Chu YF, Wang CK, Yeh YL, Wang SG, et al. 2007. Effects of long-term intermittent hypoxia on mitochondrial and Fas death receptor dependent apoptotic pathways in rat hearts. Int J Cardiol 116:348–356
  • Lee SD, Kuo WW, Bau DT, Ko FY, Wu FL, Kuo CH, Tsai FJ, et al. 2008. The coexistence of nocturnal sustained hypoxia and obesity additively increases cardiac apoptosis. J Appl Physiol 104:1144–1153
  • Lee SD, Kuo WW, Wu CH, Lin YM, Lin JA, Lu MC, Yang AL, et al. 2006. Effects of short- and long-term hypobaric hypoxia on Bcl2 family in rat heart. Int J Cardiol 108:376–384
  • Lin YM, Huang SK, Wang HF, Chen LM, Tsai FJ, Hsu HH, Kuo CH, et al. 2008. Short-term versus long-term intermittent hypobaric hypoxia on cardiac fibrosis and Fas death receptor dependent apoptotic pathway in rat hearts. Chin J Physiol 51:308–316
  • Lin HJ, Chen WL, Chen TH, Kung YJ, Wan L. 2014. Vascular endothelial growth factor −460 C/T BstUI gene polymorphism is associated with primary open angle glaucoma. Biomedicine (Taipei) 4:20–23
  • Matsui T, Nagoshi T, Rosenzweig A. 2003. Akt and PI 3-kinase signaling in cardiomyocyte hypertrophy and survival. Cell Cycle 2:220–223
  • Meng W, Zhao W, Zhao T, Liu C, Chen Y, Liu H, Sun Y. 2014. Autocrine and paracrine function of Angiotensin 1-7 in tissue repair during hypertension. Am J Hypertens 27:775–782
  • Mori J, Patel VB, Abo Alrob O, Basu R, Altamimi T, Desaulniers J, Wagg CS, et al. 2014. Angiotensin 1-7 ameliorates diabetic cardiomyopathy and diastolic dysfunction in db/db mice by reducing lipotoxicity and inflammation. Circ Heart Fail 7:327–339
  • Natsuizaka M, Naganuma S, Kagawa S, Ohashi S, Ahmadi A, Subramanian H, Chang S, et al. 2012. Hypoxia induces IGFBP3 in esophageal squamous cancer cells through HIF-1α-mediated mRNA transcription and continuous protein synthesis–mediated transcription continuous synthesis. FASEB J 26:2620–2630
  • Papinska AM, Mordwinkin NM, Meeks CJ, Jadhav SS, Rodgers KE. 2015. Angiotensin-(1-7) administration benefits cardiac, renal and progenitor cell function in db/db mice. Br J Pharmacol 172:4443–4601
  • Petty WJ, Aklilu M, Varela VA, Lovato J, Savage PD, Miller AA. 2012. Reverse translation of phase I biomarker findings links the activity of angiotensin-(1-7) to repression of hypoxia inducible factor-1α in vascular sarcomas. BMC Cancer 12:404–411
  • Pisarenko O, Shulzhenko V, Studneva I, Pelogeykina Y, Timoshin A, Anesia R, Valet P, et al. 2015. Structural apelin analogues: Mitochondrial ROS inhibition and cardiometabolic protection in myocardial ischaemia reperfusion injury. Br J Pharmacol 172:2933–2945
  • Ren T, He H, Yu X, Fan J, Tan J, Liu J. 2013. Angiotensin-(1-7) inhibits hypoxia-induced renal tubular epithelial-to-mesenchymal transition in rats. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 29:593–596
  • Santos RA, Ferreira AJ, Verano-Braga T, Bader M. 2013. Angiotensin-converting enzyme 2, angiotensin-(1-7) and Mas: New players of the renin-angiotensin system. J Endocrinol 216:R1–R17
  • Santos RA, Ferreira AJ, Nadu AP, Braga AN, de Almeida AP, Campagnole-Santos MJ, Baltatu O, et al. 2004. Expression of an angiotensin-(1-7)-producing fusion protein produces cardioprotective effects in rats. Physiol Genomics 17:292–299
  • Santos RA, Simoes e Silva AC, Maric C, Silva DM, Machado RP, de Buhr I, Heringer-Walther S, et al. 2003. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 100:8258–8263
  • Santos RA, Castro CH, Gava E, Pinheiro SV, Almeida AP, Paula RD, Cruz JS, et al. 2006. Impairment of in vitro and in vivo heart function in angiotensin-(1-7) receptor MAS knockout mice. Hypertension 47:996–1002
  • Tallant EA, Ferrario CM, Gallagher PE. 2005. Angiotensin-(1-7) inhibits growth of cardiac myocytes through activation of the mas receptor. Am J Physiol Heart Circ Physiol 289:H1560–H1566
  • Yamamuro M, Yoshimura M, Nakayama M, Abe K, Sumida H, Sugiyama S, Saito Y, et al. 2008. Aldosterone, but not angiotensin II, reduces angiotensin converting enzyme 2 gene expression levels in cultured neonatal rat cardiomyocytes. Circ J 72:1346–1350
  • Zhao P, Li F, Gao W, Wang J, Fu L, Chen Y, Huang M. 2015. Angiotensin1-7 protects cardiomyocytes from hypoxia/reoxygenation-induced oxidative stress by preventing ROS-associated mitochondrial dysfunction and activating the Akt signaling pathway. Acta Histochem 117:803–810

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.