22
Views
9
CrossRef citations to date
0
Altmetric
Original Article

Differential Expression of Wnt Genes in Normal and Flat Variants of PC 12 Cells, a Cell Line Responsive to Ectopic Wnt1 Expression

&
Pages 149-158 | Received 27 May 1997, Accepted 09 Jul 1997, Published online: 11 Jul 2009

References

  • Auffray C., Rougeon F. Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA. Eur. J. Biochem. 1980; 107: 303–314
  • Bhanot P., Brink M., Harryman Samos C., Hsieh J. -C, Wang Y., Macke J. P., Andrew D., Nathans J., Nusse R. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 1996; 382: 225–230
  • Blasband A., Schryver B., Papkoff J. The biochemical properties and transforming potential of human Wnt-2 are similar to Wnt-1. Oncogene 1992; 7: 153–161
  • Bradbury J. M., Niemeyer C. C., Dale T. C., Edwards P. A. Alterations of the growth characteristics of the fibroblast cell line C3H 10T1/2 by members of the Wnt gene family. Oncogene 1994; 9: 2597–2603
  • Bradley R. S., Brown A. M. The proto-oncogene int-1 encodes a secreted protein associated with the extracellular matrix. EMBO J. 1990; 9: 1569–1575
  • Bradley R. S., Brown A. M. A soluble form of Wnt-1 protein with mitogenic activity on mammary epithelial cells. Mol. Cell. Biol. 1995; 15: 4616–4622
  • Bradley R. S., Cowin P., Brown A. M. Expression of Wnt-1 in PC 12 cells results in modulation of plakoglobin and E-cadherin and increased cellular adhesion. J. Cell. Biol. 1993; 123: 1857–1865
  • Brown A. M., Papkoff J., Fung Y. K., Shackleford G. M., Varmus H. E. Identification of protein products encoded by the proto-oncogene int-1. Mol. Cell. Biol. 1987; 7: 3971–3977
  • Brown A. M. C., Wildin R. S., Prendergast T. J., Varmus H. E. A retrovirus vector expressing the putative mammary oncogene int-1 causes partial transformation of a mammary epithelial cell line. Cell 1986; 46: 1001–1009
  • Cui Y., Brown J. D., Moon R. T., Christian J. L. Xwnt-8b: a maternally expressed Xenopus Wnt gene with a potential role in establishing the dorsoventral axis. Development 1995; 121: 2177–2186
  • Dominguez I., Itoh K., Sokol S. Y. Role of glycogen synthase kinase 3 β as a negative regulator of dorsoventral axis formation in Xenopus embryos. Proc. Natl. Acad. Sci. U.S.A. 1995; 92: 8498–8502
  • Du S. J., Purcell S. M., Christian J. L., McGrew L. L., Moon R. T. Identification of distinct classes and functional domains of Wnts through expression of wild-type and chimeric proteins in Xenopus embryos. Mol. Cell. Biol. 1995; 15: 2625–2634
  • Fung Y. K., Shackleford G. M., Brown A. M., Sanders G. S., Varmus H. E. Nucleotide sequence and expression in vitro of cDNA derived from mRNA of int-1, a provirally activated mouse mammary oncogene. Mol. Cell. Biol. 1985; 5: 3337–3344
  • Gavin B. J., McMahon A. P. Differential regulation of the Wnt gene family during pregnancy and lactation suggests a role in postnatal development of the mammary gland. Mol. Cell. Biol. 1992; 12: 2418–2423
  • Gavin B. J., McMahon J. A., McMahon A. P. Expression of multiple novel Wnt-1/int-1-related genes during fetal and adult mouse development. Genes Dev. 1990; 4: 2319–2332
  • Gumbiner B. M. Signal transduction of β-catenin. Curr. Opin. Cell Biol. 1995; 7: 634–640
  • Hardiman G., Albright S., Tsunoda J., McClanahan T., Lee F. The mouse Wnt-10b gene isolated from helper T cells is widely expressed and a possible oncogene in BR6 mouse mammary tumorigenesis. Gene 1996; 172: 199–205
  • He X., Saint Jeannet J. P., Woodgett J. R., Varmus H. E., Dawid I. B. Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos. Nature 1995; 374: 617–622
  • Hinck L., Nathke I. S., Papkoff J., Nelson W. J. β-catenin: a common target for the regulation of cell adhesion by Wnt-1 and Src signaling pathways. Trends Biochem. Sci. 1994a; 19: 538–542
  • Hinck L., Nelson W. J., Papkoff J. Wnt-1 modulates cell-cell adhesion in mammalian cells by stabilizing β-catenin binding to the cell adhesion protein cadherin. J. Cell Biol. 1994b; 124: 729–741
  • Huguet E. L., McMahon J. A., McMahon A. P., Bicknell R., Harris A. L. Differential expression of human Wnt genes 2,3,4, and 7B in human breast cell lines and normal and disease states of human breast tissue. Cancer Res. 1994; 54: 2615–2621
  • Huguet E. L., Smith K., Bicknell R., Harris A. L. Regulation of Wnr5a mRNA expression in human mammary epithelial cells by cell shape, confluence, and hepatocyte growth factor. J. Biol. Chem. 1995; 270: 12851–12856
  • Iozzo R. V., Eichstetter I., Danielson K. G. Aberrant expression of the growth factor Wnt-5A in human malignancy. Cancer Res. 1995; 55: 3495–3499
  • Kelly G. M., Erezyilmaz D. F., Moon R. T. Induction of a secondary embryonic axis in zebrafish occurs following the overexpression of β-catenin. Mech. Dev. 1995; 53: 261–273
  • Ku M., Melton D. A. Xwnt-11: a maternally expressed Xenopus Wnt gene. Development 1993; 119: 1161–1173
  • McGrew L. L., Lai C. J., Moon R. T. Specification of the anteroposterior neural axis through synergistic interaction of the Wnt signaling cascade with noggin follistatin. Dev. Biol. 1995; 172: 337–342
  • McMahon A. P., Bradley A. The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 1990; 62: 1073–1085
  • McMahon A. P., Moon R. T. Ectopic expression of the proto-oncogene int-1 In Xenopus embryos leads to duplication of the embryonic axis. Cell 1989a; 58: 1075–1084
  • McMahon A. P., Moon R. T. Int-1 -a proto-oncogene involved in cell signalling. Development 1989b; 107: 161–167
  • McMahon J. A., McMahon A. P. Nucleotide sequence, chromosomal localization and developmental expression of the mouse int-1 -related gene. Development 1989; 107: 643–650
  • Moon R. T., Campbell R. M., Christian J. L., McGrew L. L., Shih J., Fraser S. Xwnt-5A: a maternal Wnt that affects morphogenetic movements after overexpression in embryos of Xenopus laevis. Development 1993a; 119: 97–111
  • Moon R. T., De Marais A., Olson D. J. Responses to Wnt signals in vertebrate embryos may involve changes in cell adhesion and cell movement. J. Cell. Sci. Suppl. 1993b; 17: 183–188
  • Nusse R., Varmus H. E. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 1982; 31: 99–109
  • Nusse R., Varmus H. E. Wnt genes. Cell 1992; 69: 1073–1087
  • Olson D. J., Papkoff J. Regulated expression of Wnt family members during proliferation of C57 mg mammary cells. Cell Growth Differ. 1994; 5: 197–206
  • Papkoff J. Inducible overexpression and secretion of int-1 protein. Mol. Cell. Biol. 1989; 9: 3377–3384
  • Papkoff J. Identification and biochemical characterization of secreted Wnt-1 protein from P19 embryonal carcinoma cells induced to differentiate along the neuroectodermal lineage. Oncogene 1994; 9: 313–317
  • Papkoff J., Brown A. M., Varmus H. E. The int-1 proto-oncogene products are glycoproteins that appear to enter the secretory pathway. Mol. Cell. Biol. 1987; 7: 3978–3984
  • Papkoff J., Schryver B. Secreted int-1 protein is associated with the cell surface. Mol. Cell. Biol. 1990; 10: 2723–2730
  • Parr B. A., McMahon A. P. Wnt genes and vertebrate development. Curr. Opin. Genet. Dev. 1994; 4: 523–528
  • Parr B. A., McMahon A. P. Dorsalizing signal Wnt-7a required for normal polarity of D-V and A-P axes of mouse limb. Nature 1995; 374: 350–353
  • Parr B. A., Shea M. J., Vassileva G., McMahon A. P. Mouse Wnt genes exhibit discrete domains of expression in the early embryonic CNS and limb buds. Development 1993; 119: 247–261
  • Roelink H., Nusse R. Expression of two members of the Wnt family during mouse development-restricted temporal and spatial patterns in the developing neural tube. Genes Dev. 1991; 5: 381–388
  • Roelink H., Wagenaar E., Lopes da Silva S., Nusse R. Wnt-3, a gene activated by proviral insertion in mouse mammary tumors, is homologous to int-1/Wnt-1 and is normally expressed in mouse embryos and adult brain. Proc. Nat. Acad. Sci. U.S.A. 1990; 87: 4519–4523
  • Sambrooks J., Fritsch E. F., Maniatis T. Molecular cloning, a laboratory manual.Second edition, C. Nolan. Cold Spring Harbor Laboratory Press, Cold Spring Harbor. 1989
  • Schuuring E., Van Deemter L., Roelink H., Nusse R. Transient expression of the proto-oncogene int-1 during differentiation of P19 embryonal carcinoma cells. Mol. Cell. Biol. 1989; 9: 1357–1361
  • Shackleford G. M., Varmus H. E. Expression of the proto-oncogene int-1 is restricted to postmeiotic male germ cells and the neural tube of mid-gestational embryos. Cell 1987; 50: 89–95
  • Shackleford G. M., Willert K., Wang J., Varmus H. E. The Wnt-1 proto-oncogene induces changes in morphology, gene expression, and growth factor responsiveness in PC12 cells. Neuron. 1993; 11: 865–875
  • Smolich B. D., McMahon J. A., McMahon A. P., Papkoff J. Wnt family proteins are secreted and associated with the cell surface. Mol. Biol. Cell 1993; 4: 1267–1275
  • Smolich B. D., Papkoff J. Regulated expression of Wnt family members during neuroectodermal differentiation of P19 embryonal carcinoma cells: overexpression of Wnt-1 perturbs normal differentiation-specific properties. Dev. Biol. 1994; 166: 300–310
  • Sokol S., Christian J. L., Moon R. T., Melton D. A. Injected Wnt RNA induces a complete body axis in Xenopus embryos. Cell 1991; 67: 741–752
  • St. Arnaud R., Craig J., McBurney M. W., Papkoff J. The int-1 proto-oncogene is transcriptionally activated during neuroectodermal differentiation of P19 mouse embryonal carcinoma cells. Oncogene 1989; 4: 1077–1080
  • Takada S., Stark K. L., Shea M. J., Vassileva G., McMahon J. A., McMahon A. P. Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev. 1994; 8: 174–189
  • Thomas K. R., Capecchi M. R. Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature 1990; 346: 847–850
  • Torres M. A., Yang Snyder J. A., Purcell S. M., De Marais A. A., McGrew L. L., Moon R. T. Activities of the Wnt-1 class of secreted signaling factors are antagonized by the Wnt-5A class and by a dominant negative cadherin in early Xenopus development. J. Cell. Biol. 1996; 133: 1123–1137
  • Tsukamoto A. S., Grosschedl R., Guzman R. C., Parslow T., Varmus H. E. Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 1988; 55: 619–625
  • Ungar A. R., Kelly G. M., Moon R. T. Wnt4 affects morphogenesis when misexpressed in the zebrafish embryo. Mech. Dev. 1995; 52: 153–164
  • Vider B. Z., Zimber A., Chastre E., Prevot S., Gespach C., Estlein D., Wolloch Y., Tronick S. R., Gazit A., Yaniv A. Evidence for the involvement of the Wnt2 gene in human colorectal cancer. Oncogene 1996; 12: 153–158
  • Wang J., Shackleford G. M. Murine Wnt10a, Wnt10b: cloning and expression in developing limbs, face and skin of embryos and in adults. Oncogene 1996; 13: 1527–1544
  • Wolda S. L., Moody C. J., Moon R. T. Overlapping expression of XWnt-3A, XWnt-1 in neural tissue of Xenopus Laevis embryos. Dev. Biol. 1993; 155: 46–57
  • Wolda S. L., Moon R. T. Cloning and developmental expression in Xenopus laevis of seven additional members of the Wnt family. Oncogene 1992; 7: 1941–1947
  • Wong G. T., Gavin B. J., McMahon A. P. Differential transformation of mammary epithelial cells by Wnt genes. Mol Cell Biol. 1994; 14: 6278–6286
  • Yoshioka H., Ohuchi H., Nohno T., Fujiwara A., Tanda N., Kawakami Y., Noji S. Regional expression of the CWnt-4 gene in developing chick central nervous system in relationship to the diencephalic neuromere D2 and a dorsal domain of the spinal cord. Biochem. Biophys. Res. Commun. 1994; 203: 1581–1588

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.