29
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Manipulation of Macrophage Activities Using Liposomes

, &
Pages 359-389 | Published online: 28 Sep 2008

References

  • Van Rooijen N., Bakker J., Sanders A. Transient suppression of macrophage functions by liposome-encapsulated drugs. Trends in Biotechnology 1997; 15: 178
  • Van Rooijen N., Sanders A. Liposome mediated depletion of macro-phages: mechanism of action, preparation of liposomes and applications. Journal of Immunological Methods 1994; 174: 83
  • Van Furth R., Cohn Z. A., Hirsch J. G., Humphrey J. H., Langevoort H. L. The mononuclear phagocyte system: a new classification of macrophages, monocytes and their precursor cells. Bull WHO 1972; 46: 845
  • Metcalf D. The haemopoietic colony stimulating factors. Elsevier Publishers, Amsterdam 1984
  • Van Furth R., Diesseldoff-den Dulk M. M. C., Mattie H. Quantative study on the production and kinetics of mononuclear phagocytes during an acute inflammatory reaction. Journal of Experimental Medicine 1973; 138: 1314
  • Van Furth R. Mononuclear phagocytes. Characteristics, physiology and function. Ed Martinus Nijhoff Publishers, Dordreht, Boston, Lancester 1985
  • Wijffels J. F. A. M., De Rover Z., Beelen R. H. J., Kraal G., Van Rooijen N. Macrophage subpopulations in the mouse spleen renewed by local stem cell proliferation. Immunobiology 1994; 191: 52
  • Van Furth R., Diesseldoff-den Dulk M. M.C. Dual origin of mouse spleen macrophages. Journal of Experimental Medicine 1984; 160: 1273
  • Dijkstra C. D., Dopp E. A., Joling P., Kraal G. The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognised by monoclonal antibodies. Immunology 1985; 54: 589
  • Van Oss C. J. Phagocytosis: an overview. Methods in Enzymology 1986; 132: 3
  • Nathan C. F. Secretory products of macrophages. Journal of clinical investigations 1987; 79: 319
  • Pabst R. The spleen in monocyte migration. Immunology Today 1988; 9: 43
  • Ter Kraal G., Hart H., Meelhuizen C., Vennecker G., Classen E. Marginal zone macrophages and their role in immune responses against T-independent type 2 antigens: Modulation of the cells with specific antibody. European Journal of Immunology 1989; 19: 675
  • Van Vliet E., Melis M., Van Erwijk W. Marginal zone macrophages in the mouse spleen identified by a monoclonal antibody. Anatomical correlation with a B cell subpopulation. Journal of Histochemistry and Cytochemistry 1985; 33: 40
  • Hoefsmit E. C. M., Kamperdijk E. W. A., Hendricks H. R. Lymph node macrophages. RES 1980; 1: 417
  • Brian J. D. Lung macrophages: how many kinds are there? What do they do. Am. Rev. Respir. Dis. 1988; 137: 507
  • Breel M., Van der Ende M., Sminia T., Kraal G. Subpopulations of lymphoid and non-lymphoid cells in bronchus-associated lymphoid tissue (BALT) of the mouse. Immunology 1988; 63: 657
  • Franke-Ullman G., Pfortner C., Walter P., Steinmuller C., Lohmann-Matthes L-M., Kobzik L. Characterization of murine lung interstitial macrophages in comparison with alveolar macrophages in vitro. Journal of Immunology 1996; 157: 3097
  • Metchnikoff E. Lectures on the comparative pathology of inflammation. Dove Publications, New York 1892, (reprinted in 1968)
  • Qian Q., Jutila M. A., Van Rooijen N., Cutler J. E. Elimination of mouse splenic macrophages correlates with increased susceptibility to experimental disseminated candidiasis. Journal of Immunology 1994; 152: 5000
  • Van Oss C. J., Gillman C. F., Neumann A. W. Phagocytosis as a surface phenomenon. IV. The minimum size and composition of antigen-antibody complexes that can become phagocytosed. Immunology Communications 1974; 3: 77
  • Dunne D. W., Resnick D., Greenberg J., Krieger M., Joiner K. A. The type I macrophage scavenger receptor binds to Gram-positive bacteria and recognizes lipoteichoic acid. Proceedings of the National Academy of Sciences U.S.A 1994; 91: 1863
  • Krieger M., Herz J. Structures and functions of multiligans lipoprotein receptors: macrophage scavenger receptors and LDL receptor related protein (LRP). Annual Reviews of Biochemistry 1994; 63: 601
  • Ravetch J. V. Fc receptors. Current Opinion in Immunology 1997; 9: 121
  • Stahl P. D. The mannose receptor and other macrophage lectins. Current Opinion in Immunology 1992; 4: 49
  • Broug-Holub E., Van Toews G. B., Iwaarden J. F., Strieter R. M., Kunkel S. L., Paine R., III, Standiford T. J. Alveolar macrophages are required for protective pulmonary defences in murine Klebsiella pneumonia: elimination of alveolar macrophages increases neutrophil recruitment but decreased bacterial clearance and survival. Infection and Immunity 1997; 65: 1139
  • Zisman B., Hirsch M. S., Allison A. C. Selective effects of anti-macrophage serum, silica and anti-lymphocyte serum on pathogenesis of herpes virus infection of young adult mice. Journal of Immunology 1970; 104: 1155
  • Zisman B., Hirsch M. S., Allison A. C. Role of macrophages and antibody in resistance of mice against yellow fever virus. Journal of Immunology 1971; 107: 236
  • Stein M., Keshaw S. The versatility of macrophages. Clinical and Experimental Allergy 1992; 22: 19
  • Doherty T. M. T-cell regulation of macrophage function. Current Opinion in Immunology 1995; 7: 400
  • Janeway A. C., Travers P. Immuno Biology: The immune system in health and disease. Current Biology LTD/ Garland publishing Inc., New York and London 1994
  • Cross C. E. Oxygen radicals and human disease. Annals of International Medicine 1987; 107: 526
  • Marletta M. A., Yoon P. S., Iyengar R., Leaf C. D., Wishnok J. S. Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry 1988; 27: 8706
  • Denham S., Rowland I. J. Inhibition of the reactive proliferation of lymphocytes by activated macrophages: the role of nitric oxide. Clinical and Experimental Immunology 1992; 87: 157
  • Nussler A. K., Billiar T. R. Inflammation, immunoregulation, and inducible nitric oxide synthase. Journal of Leukocyte Biology 1993; 54: 171
  • Duong T. T., Louis J., St., Gilbert J. J., Finkelman F. D., Wietzerbin J. Effect of anti-interferon-gamma and anti-interleukin-2 monoclonal antibody treatment on the development of actively and passively induced experimental allergic encephalomyelitis. Journal of Neuroimmunology 1992; 36: 105
  • Selmaj K., Papierz W., Glabinski A., Kohno T. Prevention of chronic relapsing experimental autoimmune encephalomyelitis by soluble TNF receptor 1. Journal of Neuroimmunology 1995; 56: 135
  • Silverstein SC. Phagocytosis of microbes: insights and prospects. Trends in Cell Biology 1995; 5: 141
  • Allen L-AH, Aderem A. Mechanisms of phagocytosis. Current Opinion in Immunology 1996; 8: 36
  • Pommier C. O., Inada S., Fries L. F., Taka-Hashi T., Frank M. M., Brown E. J. Plasma fibronectin enhances phagocytosis of opsonized particles by human peripheral blood monocytes. Journal of Experimental Medicine 1983; 157: 18
  • Wright S. D., Craigmyle L. S., Silverstein S. C. Fibronectin and serum amyloid P component stimulate C3b- and C3bi-mediated phagocytosis in cultured human monocytes. Journal of Experimental Medicine 1983; 158: 1338
  • Allen L. A. H., Aderem A. Molecular definition of distinct cytoskeletal structures involved in complement- and Fc receptor-mediated phagocytosis in macro-phages. Journal of Experimental Medicine 1996; 184: 627
  • Allen L. H., Aderem A. A role for MARCKS, the alpha isozyme of protein kinase C and myosin I in zymosan phagocytosis by macrophages. Journal of Experimental Medicine 1995; 182: 829
  • Ravetch J. V. Fc receptors: rubor redux. Cell 1994; 78: 55340
  • Takai T., Li M., Sylvestre D., Clynes R., Ravetch N. FcR gamma chain deletion results in pleiotrophic effector cell defects. Cell 1994; 76: 519–29
  • Greenberg S. Signal transduction of phagocytosis. Trends in Cell Biology 1995; 5: 93–99
  • Crowley M. T., Costello P. S., Fitzer-Attas C. J., Turner M., Meng F., Lowell C., Tybulewicz V. L., DeFranco A. L. A critical role for Syk in signal transduction and phagocytosis mediated by Fcgamma receptors on macrophages. Journal of Experimental Medicine 1997; 186: 1027
  • Indik Z. K., Park J. O., Hunter S., Schreiber A. D. The molecular dissection of Fc gamma receptor mediated phagocytosis. Blood 1995; 86: 4389
  • Gresham H. D., Dale D. M., Potter J. W., Chang P. W., Vines C. M., Lowell C. A., Lagenaur C. F., Willman C. L. Negative regulation of phagocytosis in murine macrophages by the Src kinase famile member, Fgr. Journal of Experimental Medicine 2000; 191: 515
  • Sanchez-Mejadora G., Rosales C. Signal transduction by immunoglobulin Fc receptors. Journal of Leukocyte Biology 1998; 63: 521
  • Toker A., Cantley L. C. Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature 1997; 387: 673
  • Ninomiya N., Hazeki K., Fukui Y., Seya T., Okada T., Hazeki O., Ui M. Involvement of phosphatidyl inositol 3-kinase in Fegamma receptor signaling. Journal of Biological Chemistry 1994; 269: 22732
  • Araki N., Johnson M. T., Swanson J. A. A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. Journal of Cell Biology 1996; 135: 1249
  • Hall A. Rho GTPases and the actin cytoskeleton. Science 1998; 279: 509
  • Ridley Al, Paterson H. F., Johnston C. L., Diekmann D., Hall A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 1992; 70: 401
  • Hackam D. J., Rotstein O. D., Schreiber A., Zhang W., Grinstein S. Rho is required for the initiation of calcium signaling and phagocytosis by Fc gamma receptors in macrophages. Journal of Experimental Medicine 1997; 186: 955
  • Cox D., Chang P., Zhang Q., Reddy P. G., Bokoch G. M., Greenberg S. Requirements for both Racl and Cdc42 in membrane ruffling and phagocytosis in leukocytes. Journal of Experimental Medicine 1997; 186: 1487
  • Roth M. G., Sternweis P. C. The role of lipid signaling in constitutive membrane traffic. Current Opinion in Cell Biology 1997; 9: 519
  • Zhang Q., Cox D., Tseng C. C., Donaldson J. G., Greenberg S. A requirement for ARF6 in Fcγ receptor-mediated phagocytosis in macrophages. Journal of Biological Chemistry 1998; 273: 19977
  • Zheleznyak A., Brown E. J. Immunoglobulin-mediated phagocytosis by human monocytes requires protein kinase C activation. Journal of Biological Chemistry 1992; 267: 12042
  • Aderem A. The MARCKS brothers: a family of protein kinase C substrates. Cell 1992; 71: 713
  • Hartwig J. H., Thelen M., Rosen A., Janmey P. A., Nairn A. C., Aderem A. MARCKS is an actin filament crosslinking protein regulated by protein kinase C and calcium-calmodulin. Nature 1992; 356: 618
  • Li J., Aderem A. MacMARCKS, a novel member of the MARCKS family of protein kinase C substrates. Cell 1992; 70: 791
  • Zhu Z., Bao Z., Li J. MacMARCKS mutation blocks macrophage phagocytosis of zymosan. Journal of Biological Chemistry 1995; 270: 17652
  • Underhill D. M., Chen J., Allen L-AH, Aderem A. MacMARCKS is not essential for phagocytosis in macrophages. Journal of Biological Chemistry 1998; 273: 33619
  • Sengelov H. Complement receptors in neutrophils. Critical Reviews of Immunology 1995; 15: 107
  • Caroll M. C. The role of complement and complement receptors in induction and regulation of immunity. Annual Reviews of Immunology 1998; 16: 545
  • Brown E. J. Complement receptors and phagocytosis. Current Opinion in Immunology 1991; 3: 76
  • Kaplan G. Differences in the mode of phagocytosis with Fc and C3 receptors in macrophages. Scandinavian Journal of Immunology 1977; 6: 797
  • Aderem A. A., Wright S. D., Silverstein S. C., Cohn Z. A. Ligated complement receptors do not activate the arachidonic acid cascade in resident peritoneal macrophages. Journal of Experimental Medicine 1985; 161: 617
  • Wright S. D., Silverstein S. C. Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. Journal of Experimental Medicine 1983; 158: 201
  • Stahl P. D., Ezekowitz R. A. The mannose receptor is a pattern recognition receptor involved in host defense. Current Opinion in Immunology 1998; 10: 50
  • Ezekowitz R. A., Sastry K., Bailly P., Warner A. Molecular characterization of the human macrophage mannose receptor: demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeasts in Cos- 1 cells. Journal of Experimental Medicine 1990; 172: 1785
  • Yamamoto Y., Klein T. W., Friedman H. Involvement of mannose receptor in cytokine interleukin-1 beta (IL-1beta), IL-6, granulocyte-macrophage colony-stimulating factor responses, but not in chemokine macrophage inflammatory protein 1 beta (MIP-1beta), MIP-2, KC responses, caused by attachment of Candida albicans to macrophages. Infection and Immunity 1997; 65: 1077
  • Garner R. E., Rubanowice K., Sawyer R. T., Hudson I. A. Secretion of TNF-alpha by alveolar macrophages in response to Candida albicans mannan. Journal of Leukocyte Biology 1994; 55: 161
  • Shibata Y., Metzger W. I., Myrvik Q. N. Chitin particle-induced cell-mediated immunity is inhibited by soluble mannan: Mannose receptor-mediated phagocytosis initiates IL- 12 production. Journal of Immunology 1997; 159: 2462
  • Sweet M. J., Hume D. A. Endotoxin signal transduction in macrophages. Journal of Leukocyte Biology 1996; 60: 8
  • Ulevitch R. J., Tobias P. S. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annual Reviews of Immunology 1995; 13: 437
  • Rietschel E. T. Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB Journal. 1994; 8: 217
  • Schletter J., Heine H., Ulmer A. J., Rietschel E. T. Molecular mechanisms of endotoxin activity. Archives of Microbiology 1995; 164: 383
  • Lemaitre B., Nicolas E., Michaut L., Reichhart J. M., Hoffmann J. A. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996; 86: 973
  • Hashimoto C., Hudson K. L., Anderson K. V. The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 1988; 52: 269
  • O'Neill L. A., Greene C. Signal transduction pathways activated by the IL-1 receptor family: ancient signaling machinery in mammals, insects, and plants. Journal of Leukocyte Biology 1998; 63: 650
  • Medzhitov H., Freston-Huriburt P., Janeway C. A., Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997; 388: 394
  • Rock F. L., Hardiman G., Timans J. C., Kastelein R. A., Bazan J. F. A family of human receptors structurally related to Drosophila Toll. Proceeding of the National Academy of Sciences USA. 1998; 95: 588
  • Takeuchi O., Kawai T., Santo H., Copeland N. G., Gilbert D. J., Jenkins N. A., Takeda K., Akira S. TLR6: a novel member of an expanding Toll-like receptor family. Gene 1999; 231: 59
  • Yang R. B., Mark M. B., Gray A., Huang A., Xie M. H., Zhang M., Goddaro A., Wood W. I., Gurney A. L., Godowski P. J. Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature 1998; 395: 284
  • Kirschning C. J., Wesohe H., Merrill Ayres T., Rothe M. Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. Journal of Experimental Medicine 1998; 188: 2091
  • Poltorak A., He X., Smirnova I., Liu M. Y., Hutfel C. V., Cu X., Birdwell C., Alejos E., Silva M., Galanos C., Freudenberg M., Ricciardi-Castagnoli P., Layton B., Beutler B. Detective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998; 282: 2085
  • Yang R. B., Mark M. R., Gurney A. L., Godowski P. J. Signaling events induced by lipopolysaccharide-activated Toll-like receptor 2. Journal of Immunology 1999; 163: 639
  • Takeuchi O., Takeda K., Hoshino K., Adachi O., Ogawa T., Akira S. Cellular responses to bacterial cell wall components are mediated through MyD88-dependent signaling cascades. International Immunology 2000; 12: 113
  • Muzio M., Natoli G., Saccani S., Levrero M., Mantovani A. The human Toll signaling pathway: divergence of nuclear factor κB and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6). Journal of Experimental Medicine 1998; 187: 2097
  • Wheelock E. F. Interferon-like virus-inhibitor induced in human leukocytes by phytohemagglutinin. Science 1965; 149: 310
  • Perussia B. Lymphokine-activated killer cells, natural killer cells and cytokines. Current Opinion Immunology 1991; 3: 49
  • Mosmann T. R., Coffman R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annual Reviews of Immunology 1989; 7: 145
  • Sad S., Marcotte R., Mosmann T. R. Cytokine-induced differentiation of precursor mouse CD8+ T cells into cytotoxic CD8+ T cells secreting Th1 or T2 cytokines. Immunity 1995; 2: 271
  • Ullman K. S., Northrop I. P., Verweij C. L., Crabtree O. R. Transmission of signals from the T lymphocyte antigen receptor to the genes responsible for cell proliferation and immune function: the missing link. Annual Reviews of Immunology 1990; 8: 421
  • Trinchieri O. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annual Reviews of Immunology 1995; 13: 251
  • Hardy K. J., Sawada T. Human γ-interferon strongly upregulates its own gene expression in peripheral blood lymphocytes. Journal of Eperimental Medicine 1989; 170: 1021
  • Valente O., Ozmen L., Novelli F., Oeuna M., Palestro O., Forni O., Oarotta O. Distribution of interferon-γ receptor in human tissues. European Journal of Immunology 1992; 22: 2403
  • Farrar M. A., Schreiber R. D. The molecular cell biology of interferon-γ and its receptor. Annual Reviews of Immunology 1993; 11: 571
  • Ihle J. N. STATs: signal transducers and activators of transcription. Cell 1996; 84: 331
  • Oreenlund A. C., Farrar M. A., Viviano B. L., Schreiber R. D. Ligand induced IFNγ receptor tyrosine phosphorylation couples the receptor to its signal transduction system. EMBO Journal 1994; 13: 1591
  • Oreenlund A. C., Schreiber R. D., Oneddel D. V., Pennica D. Interferon-γ induces receptor dimerization in solution and on cells. Journal of Biological Chemistry 1993; 268: 18103
  • Oreenlund A. C., Morales M. O., Viviano B. L., Yan H., Krolewski I., Schreiber R. D. Stat recruitment by tyrosine-phosphorylated cytokine receptors: an ordered reversible affinity-driven process. Immunity 1995; 2: 677
  • Kim T. K., Maniatis T. Regulation of interferon-γ-activated STAT1 by the ubiquitin-proteasome pathway. Science 1996; 273: 1717
  • Sims S. H., Cha Y., Romine M. F., Oao P. Q., Oottlieb K., Deisseroth A. B. A novel interferon-inducible domain: structural and functional analysis of the human interferon regulatory factor 1 gene promoter. Molecular and Cellular Biology 1993; 13: 690
  • Coccia E. M., Marziali O., Stellacci E., Perrotti E., Iiari R., Orsatti R., Battistini A. Cells resistant to interferon-β respond to interferon-γ via the Stall-IRF-1 pathway. Virology 1995; 211: 113
  • Fujita T., Reis L. F., Watanabe N., Kimura Y., Taniguchi T., Vilcek I. Induction of the transcription factor IRF- 1 and interferon-β mRNAs by cytokines and activators of second-messenger pathways. Proceedings of the National Academy of Sciences. USA 1989; 86: 9936
  • Kamijo R., Harada H., Matsuyama T., Bosland M., Oerecitano I., Shapiro D., Le I., Koh S. I., Kimura T., Oreen S. I., Mak T. W., Taniguchi T., Vilcek I. Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science 1994; 263: 1612
  • Harada H., Fujita T., Miyarnoto M., Kimura Y., Marnyama M., Furia A., Miyata T., Taniguchi T. Structurally similar but functionally distinct factors, IRF-1 and IRF-2, bind to the same regulatory elements of IFN and IFN-inducible genes. Cell 1989; 58: 729
  • Tanaka N., Taniguchi T. Cytokine gene regulation: regulatory cis-elements and DNA binding factors involved in the interferon system. Advances in Immunology 1992; 52: 263
  • Harada H., Takanashi E-I, Itoj S., Harada K., Hori T-A, Taniguchi T. Structure and regulation of the human interferon regulatory factor 1 (IRF-1) and IRF-2 genes: implications for a gene network in the interferon system. Molecular and Cellular Biology 1994; 14: 1500
  • Veals S. A., Schindler C., Leonard D., Fu X. Y., Aebersold R., Darnell Ir I. E., Levy D. E. Subunit of an alpha-interferon-responsive transcription factor is related to interferon regulatory factor and Myb families of DNA-binding proteins. Molecular and Cellular Biology 1992; 12: 3315
  • Weisz A., Marx P., Sharf R., Appella E., Driggers P. H., Ozato K., Levi B. Z. Human interferon consensus sequence binding protein is a negative regulator of enhancer elements common to interferon-inducible genes. Journal of Biological Chemistry 1992; 267: 25589
  • Bovolenta C., Driggers P. H., Marks M. S., Medin I. A., Politis A. D., Vogel S. N., Levy D. E., Sakaguchi K., Appella E., Coligan I. E., Ozato K. Molecular interactions between interferon consensus sequence binding protein and members of the interferon regulatory factor family. Proceedings of the National Academy of Sciences. USA 1994; 91: 5046
  • Aggarwal B., Vilcek J. Tumor Necrosis Factor: Structure, function and mechanism of action. Marcel Dekker, New York 1992
  • Darnay B. G., Aggarwal B. Early events in TNF signalling: a story of associations and dissociations. Journal of Leukocyte Biology 1997; 61: 559
  • May M. J., Ghosh S. Signal transduction through NF-κB. Immunology Today 1998; 19: 80
  • Hayes M. P., Freeman S. L., Donelly R. P. IFN-γ priming of monocytes enhances LPS-induced TNF production by augmenting both transcription and mRNA stability. Cytokine. 1995; 7: 427
  • Car B. D., Eng V. M., Schnyder B., Ozmen L., Huang S., Gallay P., Heumann D., Auget M., Ryffel B. Interferon γ receptor deficient mice are resistant to endotoxic shock. Journal of Experimental Medicine 1994; 179: 1437
  • Pasparakis M., Alexopoulou M., Episkopou V., Kollias G. Immune and inflammatory responses in TNFα deficient mice. Journal of Experimental Medicine 1996; 184: 1397
  • Amiot F., Fitting C., Tracey K. J., Cavaillon J. M., Dautry F. Lipopolysaccharide-induced cytokine cascade and lethality in LTα/TNFα-deficient mice. Molecular Medicine 1997; 3: 864
  • Sweet M. J., Stacey K. J., Kaduka D. K., Markovich D., Hume D. A. IFN-γ primes macrophage responses to bacterial DNA. Journal of Interferon and Cytokine Research. 1998; 18: 263
  • Steimle V., Siegrist C., Mottet A., Lisowska-Grospierre B., Mach B. Regulation of MHC class II expression by interferon γ mediated by the transactivator gene CIITA. Science 1994; 265: 106
  • Ohmori Y., Schreiber R. D., Hamilton T. A. Synergy between interferon-γ and tumor necrosis factor-α in transcriptional activation is mediated by cooperation between signal transducer and activator of transcription 1 and nuclear factor κB. Journal of Biological Chemistry 1997; 272: 14899
  • Sanceau J., Kaisho T., Harino T., Wietzerbin J. Triggering of the human IL-6 gene by interferon-γ and tumor necrosis factor-α in monocytic cells involves cooperation between interferon regulatory factor-1, NF-κB, and SP1 trancription factors. Journal of Biological Chemistry 1995; 270: 27920
  • Ohmori Y., Hamilton T. A. The interferon-stimulated response element and a κB site mediate synergistic induction of murine IP-10 gene transcription by IFN-γ and TNF-α. Journal of Immunology 1995; 154: 5235
  • Warfel A. H., Thorbecke G. J., Belsito D. V. Synergism between interferon-γ and cytokines or lipopolysaccharide in the activation of the HIV-LTR in macrophages. Journal of Leukocyte Biology 1995; 57: 469
  • Boehm U., Klamp T., Groot M., Howard J. C. Cellular responses to interferon-γ. Annual Reviews of Immunology 1997; 15: 749
  • Chon S. Y., Hassanain H. H., Gupta S. L. Cooperative role of interferon regulatory factor 1 and p91 (STAT1) response elements in interferon-γ-inducible expression of human indoleamine 2,3-dioxygenase gene. Journal of Biological Chemistry 1996; 271: 17247
  • Hayes M. P., Zoon K. C. Priming of human monocytes for enhanced lipopolysaccharide responses: expression of α interferon, interferon regulatory factors, and tumor necrosis factor. Infection and Immunity. 1999; 61: 3222
  • Kovarik P., Stoiber D., Novy M., Decker T. Statl combines signals derived from IFN-γ and LPS receptors during macrophage activation. EMBO Journal. 1998; 17: 3660
  • Wen Z., Zhong Z., Darnell J. E. Maximal activation of trancription by STAT1 and STAT3 requires both tyrosine and serine phosphorylation. Cell. 1995; 82: 241
  • Ucla C., Roux-Lombard P., Fey S., Dayer J. M., Mach B. Interferon gamma drastically modifies the regulation of interleukin 1 genes by endotoxin in U397 cells. Journal of Clinical Investigations 1990; 85: 185
  • Kühn R., Scwenk F., Aguet M., Rajewsky K. Inducible gene targeting in mice. Science 1995; 269: 1427
  • Wolff G., Worgall S., Van Rooijen N., Song W. R., Harvey B. G., Crystal R. G. Enhancement of in vivo adenovirus-mediated gene transfer and expression by prior depletion of tissue macrophages in the target organ. Journal of Virology 1997; 71: 624
  • Alves-Rosa F., Stanganelli C., Cabrera J., Van Rooijen N., Palermo M. S., Isturiz M. A. Treatment with liposome-encapsulated clodronate as a new strategic approach in the management of immune trombocytopenic purpura (ITP) in a mouse model. Blood 2000, in press
  • Liu B., Liao J., Rao X., Kushner S. A., Chung C. D., Chang D. D., Shuai K. Inhibition of Stat1-mediated gene activation by PIAS1. Proceedings of the National Academy of Sciences USA 1998; 95: 10626

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.