30
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Receptor-Mediated Gene Delivery with Non-Viral DNA Carriers

, , &
Pages 443-460 | Published online: 28 Sep 2008

References

  • Bottger M., Vogel F., Platzer M., Kiessling U., Grade K., Strauss M. Condensation of vector DNA by the chromosomal protein HMG1 results in efficient transfection. Biochim Biophys Acta 1988; 950: 221–228
  • Kichler A., Zauner W., Morrison C., Wagner E. Ligand-polylysine mediated gene transfer. Artificial self-assembling systems for gene delivery, P. L. Felgner, M. J. Heller, P. Lehn, J.-P. Behr, F. C. Szoka. American Chemical Society, Washington, DC 1996; 120–128
  • Boussif O., Lezoualc'h F., Zanta M. A., Mergny M. D., Scherman D., Demeneix B., Behr J.-P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 1995; 92: 7297–7301
  • Felgner P. L., Gadek T. R., Holm M., Roman R., Chan H. W., Wenz M., Northrop J. P., Ringold G. M., Danielsen M. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 1987; 84: 7413–7417
  • Behr J.-P., Demeneix B., Loeffler J-P., Perez-Mutul J. Efficient gene transfer into mammalian primary endocrine cells with lipopolyamine-coated DNA. Proc Natl Acad Sci USA 1989; 86: 6982–6986
  • Felgner P. L. Improvements in cationic liposomes for in vivo gene transfer. Hum Gene Ther 1996; 7: 1791–1793
  • Haensler J., Szoka F. C. Synthesis and characterization of a tri-galactosylated bisacridine compound to target DNA to hepatocytes. Bioconjugate Chem. 1993; 4: 85–93
  • Plank C., Zauner W., Wagner E. Application of membrane-active peptides for drug and gene delivery across cellular membranes. Adv Drug Delivery Rev 1998; 34: 21–35
  • Cotten M., Langle-Rouault F., Kirlappos H., Wagner E., Mechtler K., Zenke M., Beug H., Birnstiel M. L. Transferrin-polycation-mediated introduction of DNA into human leukemic cells: stimulation by agents that affect the survival of transfected DNA or modulate transferrin receptor levels. Proc Natl Acad Sci USA 1990; 87: 4033–4037
  • Erbacher P., Roche A.-C., Monsigny M., Midoux P. Putative role of chloroquine in gene transfer into a human hepatoma cell line by DNA/lactosylated polylysine complexes. Exp Cell Res 1996; 225: 186–194
  • Zauner W., Kichler A., Schmidt W., Sinski A., Wagner E. Glycerol enhancement of ligand-polylysine/DNA transfection. Biotechniques 1996; 20: 905–913
  • Zauner W., Kichler A., Schmidt W., Mechtler K., Wagner E. Glycerol and polylysine synergize in their ability to rupture vesicular membranes: a mechanism for increased transferrin-polylysine-mediated gene transfer. Exp Cell Res 1997; 232: 137–145
  • Wu G. Y., Wu C. H. Evidence for targeted gene delivery to HepG2 hepatoma cells in vitro. Biochemistry 1988; 27: 887–892
  • Wu G. Y., Wu C. H. Liver-Directed Gene Delivery. Adv Drug Delivery Rev 1993; 12: 159–167
  • Plank C., Zatloukal K., Cotten M., Mechtler K., Wagner E. Gene transfer into hepatocytes using asialoglycoprotein receptor mediated endocytosis of DNA complexed with an artificial tetra- antennary galactose ligand. Bioconjugate Chem 1992; 3: 533–539
  • Midoux P., Mendes C., Legrand A., Raimond J., Mayer R., Monsigny M., Roche A.-C. Specific gene transfer mediated by lactosylated poly-L-lysine into hepatoma cells. Nucleic Acids Res 1993; 21: 871–878
  • Remy J. S., Kichler A., Mordvinov V., Schuber F., Behr J.-P. Targeted gene transfer into hepatoma cells with lipopolyamine-condensed DNA particles presenting galactose ligands: a stage toward artificial viruses. Proc Natl Acad Sci USA 1995; 92: 1744–1748
  • Rosenkranz A. A., Yachmenev S. V., Jans D. A., Serebryakova N. V., Murav'ev V. I., Peters R., Sobolev A. S. Receptor-mediated endocytosis and nuclear transport of a transfecting DNA construct. Exp Cell Res 1992; 199: 323–329
  • Wagner E., Curiel D. T., Cotten M. Delivery of drugs, proteins and genes into cells using transferrin as a ligand for receptor-mediated endocytosis. Adv Drug Delivery Rev 1994; 14: 113–135
  • Erbacher P., Bousser M.-T., Raimond J., Monsigny M., Midoux P., Roche A.-C. Gene transfer by DNA/glycosylated polylysine complexes into human blood monocyte-derived macrophages. Hum Gene Ther 1996; 7: 721–729
  • Ferkol T., Perales J. C., Mularo F., Hanson R. W. Receptor-mediated gene transfer into macrophages. Proc Natl Acad Sci USA 1996; 93: 101–105
  • Chen J., Gamou S., Takayanagi A., Shimizu N. A novel gene delivery system using EGF receptor-mediated endocytosis. FEBS Lett 1994; 338: 167–169
  • Carpenter D. S., Minchin R. F. Targeting of a cholecystokinin-DNA complex to pancreatic cells in vitro and in vivo. Gene Ther 1998; 5: 848–854
  • Gottschalk S., Cristiano R. J., Smith L. C., Woo S. L. Folate receptor mediated DNA delivery into tumor cells: potosomal disruption results in enhanced gene expression. Gene Ther 1994; 1: 185–191
  • Erbacher P., Remy J.-S., Behr J.-P. Gene transfer with synthetic virus-like particles via the integrin- mediated endocytosis pathway. Gene Ther 1999; 6: 138–145
  • Harbottle R. P., Cooper R. G., Hart S. L., Ladhoff A., McKay T., Knight A. M., Wagner E., Miller A. D., Coutelle C. An RGD-oligolysine peptide: a prototype construct for integrin-mediated gene delivery. Hum Gene Ther 1998; 9: 1037–1047
  • Buschle M., Cotten M., Kirlappos H., Mechtler K., Schaffner G., Zauner W., Birnstiel M. L., Wagner E. Receptor-mediated gene transfer into human T lymphocytes via binding of DNA/CD3 antibody particles to the CD3 T cell receptor complex. Hum Gene Ther 1995; 6: 753–761
  • Ferkol T., Perales J. C., Eckman E., Kaetzel C. S., Hanson R. W., Davis P. B. Gene transfer into the airway epithelium of animals by targeting the polymeric immunoglobulin receptor. J Clin Invest 1995; 95: 493–502
  • Trubetskoy V. S., Torchilin V. P., Kennel S. J., Huang L. Use of N-terminal modified poly(L-lysine)-antibody conjugate as a carrier for targeted gene delivery in mouse lung endothelial cells. Bioconjugate Chem 1992; 3: 323–327
  • Rojanasakul Y., Wang L. Y., Malanga C. J., Ma J. K., Liaw J. Targeted gene delivery to alveolar macrophages via Fc receptor-mediated endocytosis. Pharm Res 1994; 11: 1731–1736
  • Ziady A. G., Perales J. C., Ferkol T., Gerken T., Beegen H., Perlmutter D. H., Davis P. B. Gene transfer into hepatoma cell lines via the serpin enzyme complex receptor. Am J Physiol 1997; 273: G545–552
  • Schneider H., Huse K., Birkenmeier G., Otto A., Scholz G. H. Gene transfer mediated by alpha2-macroglobulin. Nucleic Acids Res 1996; 24: 3873–3874
  • Koivunen E., Arap W., Rajotte D., Lahdenranta J., Pasqualini R. Identification of receptor ligands with phage display peptide libraries. J Nucl Med 1999; 40: 883–888
  • Barry M. A., Dower W. J., Johnston S. A. Toward cell-targeting gene therapy vectors: Selection of cell-binding peptides from random peptide-presenting phage libraries. Nature Med 1996; 2: 299–305
  • Pasqualini R., Ruoslahti E. Organ targeting in vivo using phage display peptide libraries. Nature 1996; 380: 364–366
  • Fong S., Doyle L. V., Devlin J. J., Doyle M. V. Scanning whole cells with phage-display libraries: Identification of peptide ligands that modulate cell function. Drug Develop Res 1994; 33: 64–70
  • Fairbrother W. J., Christinger H. W., Cochran A. G., Fuh G., Keenan C. J., Quan C., Shriver S. K., Tom J. Y., Wells J. A., Cunningham B. C. Novel peptides selected to bind vascular endothelial growth factor target the receptor-binding site. Biochemistry 1998; 37: 17754–17764
  • Zanta M. A., Boussif O., Adib A., Behr J.-P. In vitro gene delivery to hepatocytes with galactosylated polyethylenimine. Bioconjugate Chem 1997; 8: 839–844
  • McKee T. D., DeRome M. E., Wu G. Y., Findeis M. A. Preparation of asialoorosomucoid-polylysine conjugates. Bioconjugate Chem 1994; 5: 306–311
  • Kircheis R., Kichler A., Wallner G., Kursa M., Ogris M., Felzmann T., Buchberger M., Wagner E. Coupling of cell-binding ligands to polyethylenimine for targeted gene delivery. Gene Ther 1997; 4: 409–418
  • Erbacher P., Roche A.-C., Monsigny M., Midoux P. Glycosylated polylysine/DNA complexes: gene transfer efficiency in relation with the size and the sugar substitution level of glycosylated polylysines and with the plasmid size. Bioconjugate Chem 1995; 6: 401–410
  • Erbacher P., Bettinger T., Belguise-Valladier P., Zou S., Coll J. L., Behr J.-P., Remy J.-S. Transfection and physical properties of various saccharide, poly(ethylene glycol), and antibody-derivatized polyethylenimines (PEI). J Gene Medicine 1999; 1: 210–222
  • Jones M. N. Carbohydrate-Mediated Liposomal Targeting and Drug Delivery. Adv Drug Delivery Rev 1994; 13: 215–249
  • Wadhwa M. S., Rice K. G. Receptor mediated glycotargeting. J Drug Target 1995; 3: 111–127
  • Lee R. T. Ligand structural requirements for recognition and binding by the hepatic asialoglycoprotein receptor. Targeted Diagn Ther 1991; 4: 65–86
  • Lee R. T., Lin P., Lee Y. C. New synthetic cluster ligands for galactose/N-acetylgalactosamine-specific lectin of mammalian liver. Biochemistry 1984; 23: 4255–4261
  • Lee Y. C. Binding modes of mammalian hepatic Gal/GalNAc receptors. Ciba Found Symp 1989; 145: 80–95
  • Lee Y. C. Synthetic oligosaccharides in glycobiology-An overview. Synthetic Oligosaccharides, P. Kovac. American Chemical Society, Washington, DC 1994; 2–18
  • Lee Y. C., Townsend R. R., Hardy M. R., Lonngren J., Arnarp J., Haraldsson M., Lonn H. Binding of synthetic oligosaccharides to the hepatic Gal/GalNAc lectin. Dependence on fine structural features. J Biol Chem 1983; 258: 199–202
  • Kelm S., Schauer R. The galactose-recognizing system of rat peritoneal macrophages; identification and characterization of the receptor molecule. Biol Chem Hoppe Seyler 1988; 369: 693–704
  • Kempka G., Kolb-Bachofen V. Galactose-specific receptors on liver cells. I. Hepatocyte and liver macrophage receptors differ in their membrane anchorage. Biochim Biophys Acta 1985; 847: 108–114
  • Choi Y. H., Liu F., Park J. S., Kim S. W. Lactose-poly(ethylene glycol)-grafted poly-L-lysine as hepatoma cell-targeted gene carrier. Bioconjugate Chem 1998; 9: 708–718
  • Wu G. Y., Wu C. H. Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J Biol Chem 1987; 262: 4429–4432
  • Frese J., Wu C. H., Wu G. Y. Targeting of genes to the liver with glyco-protein carriers. Adv Drug Delivery Rev 1994; 14: 137–152
  • Wu G. Y., Wu C. H. Receptor-mediated delivery of foreign genes to hepatocytes. Adv Drug Delivery Rev 1998; 29: 243–248
  • Perales J. C., Ferkol T., Molas M., Hanson R. W. An evaluation of receptor-mediated gene transfer using synthetic DNA-ligand complexes. Eur J Biochem 1994; 226: 255–266
  • Chowdhury N. R., Wu C. H., Wu G. Y., Yerneni P. C., Bommineni V. R., Chowdhury J. R. Fate of DNA targeted to the liver by asialoglycoprotein receptor-mediated endocytosis in vivo. Prolonged persistence in cytoplasmic vesicles after partial hepatectomy. J Biol Chem 1993; 268: 11265–11271
  • Perales J. C., Ferkol T., Beegen H., Ratnoff O. D., Hanson R. W. Gene transfer in vivo: sustained expression and regulation of genes introduced into the liver by receptor-targeted uptake. Proc Natl Acad Sci USA 1994; 91: 4086–4090
  • Kichler A., Schuber F. Versatile synthesis of bi- and tri-antennary galactose ligands: interaction with the Gal/GalNAc receptor of human hepatoma cells. Glycoconjugate J 1995; 12: 275–281
  • Haensler J., Schuber F. Influence of the galactosyl ligand structure on the interaction of galactosylated liposomes with mouse peritoneal macrophages. Gly-coconjugate J 1991; 8: 116–124
  • Kichler A., Schuber F. Comparative affinity of synthetic multi-antennary galactosyl derivatives for the Gal/GalNAc receptor of rat hepatocytes and peritoneal macrophages. J Drug Target 1998; 6: 201–205
  • Ozaki K., Lee R. T., Lee Y. C., Kawasaki T. The differences in structural specificity for recognition and binding between asialoglycoprotein receptors of liver and macrophages. Glycoconjugate J 1995; 12: 268–274
  • Hynes R. O. Integrins: versality, modulation, and signalling in cell adhesion. Cell 1992; 69: 11–25
  • Hart S. L., Collins L., Gustafsson K., Fabre J. W. Integrin-mediated transfection with peptides containing arginine-glycine-aspartic acid domains. Gene Ther 1997; 4: 1225–1230
  • Arap W., Pasqualini R., Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 1998; 276: 377–380
  • Reddy J. A., Low P. S. Folate-mediated targeting of therapeutic and imaging agents to cancers. Crit Rev Ther Drug Carrier Sys 1998; 15: 587–627
  • Lee R. J., Low P. S. Delivery of Liposomes into Cultured KB Cells via Folate Receptor-mediated Endocytosis. J Biol Chem 1994; 269: 3198–3204
  • Lee R. J., Low P. S. Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim Biophys Acta 1995; 1233: 134–144
  • Gabizon A., Horowitz A. T., Goren D., Tzemach D., Mandelbaum Shavit P., Qazen M. M., Zalipsky S. Targeting folate receptor with folate linked to extremities of poly(Ethylene glycol)-grafted liposomes: In vitro studies. Bioconjugate Chem 1999; 10: 289–298
  • Lee R. J., Huang L. Folate-targeted, anionic liposome-entrapped polylysine-condensed DNA for tumor cell-specific gene transfer. J Biol Chem 1996; 271: 8481–8487
  • Bishop N. E. An update on non-clathrin-coated endocytosis. Rev Medical Virology 1997; 7: 199–209
  • Cristiano R. J. Targeted, non-viral gene delivery for cancer gene therapy. Front Biosci 1998; 3: D1161–1170
  • Zauner W., Ogris M., Wagner E. Polylysine-based transfection systems utilizing receptor-mediated delivery. Adv Drug Delivery Rev 1998; 30: 97–113
  • Wagner E. Receptor-mediated delivery of plasmid DNA. Biogenic Amines 1998; 14: 519–536
  • Mahato R. I., Takakura Y., Hashida M. Nonviral vectors for in vivo gene delivery: Physicochemical and pharmacokinetic considerations. Crit Rev Ther Drug Carrier Sys 1997; 14: 133–172
  • Wagner E. Effects of membrane-active agents in gene delivery. J Control Release 1998; 53: 155–158
  • Sebestyen M. G., Wolff J. A. Nuclear transport of exogenous DNA. Nonviral vectors for gene therapy, L. Huang, M.-C. Hung, E. Wagner. Academic Press, San Diego, California 1999; 139–169

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.