302
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Targeting of ICAM-1–directed immunoliposomes specifically to activated endothelial cells with low cellular uptake: use of an optimized procedure for the coupling of low concentrations of antibody to liposomes

, , &
Pages 95-105 | Received 05 Jan 2010, Accepted 07 Mar 2010, Published online: 30 Apr 2010

References

  • Adamson, P., Etienne, S., Couraud, P. O., Calder, V., Greenwood, J. (1999). Lymphocyte migration through brain endothelial cell monolayers involves signaling through endothelial ICAM-1 via a rho-dependent pathway. J Immunol 162:2964–2973.
  • Ager, A. (1987). Isolation and culture of high endothelial cells from rat lymph nodes. J Cell Sci 87:133–144.
  • Almenar-Queralt, A., Duperray, A., Miles, L. A., Felez, J., Altieri, D. C. (1995). Apical topography and modulation of ICAM-1 expression on activated endothelium. Am J Pathol 147:1278–1288.
  • Badiee, A., Davies, N., McDonald, K., Radford, K., Michiue, H., Hart, D., et al. (2007). Enhanced delivery of immunoliposomes to human dendritic cells by targeting the multilectin receptor, DEC-205. Vaccine 207:4757–4766.
  • Bendas, G. (2001). Immunoliposomes: a promising approach to targeting cancer therapy. BioDrugs 15:215–224.
  • Bloemen, P. G., Henricks, P. A., van Bloois, L., van den Tweel, M. C., Bloem, A. C., Nijkamp, F. P., et al. (1995). Adhesion molecules: a new target for immunoliposome-mediated drug delivery. FEBS Lett 357:140–144.
  • Carpen, O., Pallai, P., Staunton, D. E., Springer, T. A. (1992). Association of intercellular adhesion molecule-1 (ICAM-1) with actin-containing cytoskeleton and alpha-actinin. J Cell Biol 118:1223–1234.
  • Ding, B. S., Dziubla, T., Shuvaev, V. V., Muro, S., Muzykantov, V. R. (2006). Advanced drug delivery systems that target the vascular endothelium. Mol Interv 6:98–112.
  • Durieu-Trautmann, O., Chaverot, N., Cazaubon, S., Strosberg, S. D., Couraud, P. O. (1994). Intercellular adhesion molecule-1 activation induces tyrosine phosphorylation of the cytoskeleton-associated protein cortactin in brain microvessel endothelial cells. J Biol Chem 269:12536–12540.
  • Etienne-Manneville, S., Manneville, J. B., Adamson, P., Wilbourn, B., Greenwood, J., Couraud, P. O. (2000). ICAM-1–coupled cytoskeletal rearrangments and transendothelial lymphocyte migration involve intracellular calcium signaling in brain endothelial cell lines. J Immunol 165:3375–3383.
  • Everts, M., Koning, G. A., Kok, R. J., Asgeirsdottir, S. A., Vestweber, D., Meijer, D. K., et al. (2003). In vitro cellular handling and in vivo targeting of E-selectin–directed immunoconjugates and immunoliposomes used for drug delivery to inflamed endothelium. Pharm Res 20:64–72.
  • Goundalkar, A., Ghose, T., Mezei, M. (1984). Covalent binding of antibodies to liposomes using a novel lipid derivative. J Pharm Pharmacol 36:465–466.
  • Han, J. C., Han, G. Y. (1994). A procedure for quantitative determination of tris(2-carboxyethyl)phosphine, an odorless reducing agent more stable and effective than dithiothreitol. Anal Biochem 220:5–10.
  • Heath, T. D., Martin, F. J. (1986). The development and application of protein-liposome conjugation techniques. Chem Phys Lipids 40:347–358.
  • Heiska, L., Alfthan, K., Gronholm, M., Vilja, P., Vaheri, A., Carpen, O. (1998). Association of ezrin with intercellular adhesion molecule-1 and -2 (ICAM-1 and ICAM-2). Regulation by phosphatidylinositol 4,5-bisphosphate. J Biol Chem 273:21893–21900.
  • Hubbard, A. K., Rothlein, R. (2000). Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades. Free Radic Biol Med 28:1379–1386.
  • Jaafari, M. R., Foldvari, M. (2002). Targeting of liposomes to melanoma cells with high levels of ICAM-1 expression through adhesive peptides from immunoglobulin domains. J Pharm Sci 91:396–404.
  • Janssen, A. P., Schiffelers, R. M., ten Hagen, T. L., Koning, G. A., Schraa, A. J., Kok, R. J., et al. (2003). Peptide-targeted PEG-liposomes in antiangiogenic therapy. Int J Pharm 254:55–58.
  • Kessner, S., Krause, A., Rothe, U., Bendas, G. (2001). Investigation of the cellular uptake of E-Selectin–targeted immunoliposomes by activated human endothelial cells. Biochim Biophys Acta 1514:177–190.
  • Koning, G. A., Schiffelers, R. M., Storm, G. (2002). Endothelial cells at inflammatory sites as target for therapeutic intervention. Endothelium 9:161–171.
  • Kuijpers, T. W., Raleigh, M., Kavanagh, T., Janssen, H., Calafat, J., Roos, D., et al. (1994). Cytokine-activated endothelial cells internalize E-selectin into a lysosomal compartment of vesiculotubular shape. J Immunol 152:5060–5069.
  • Lopes de Menezes, D. E., Pilarski, L. M., Allen, T. M. (1998). In vitro and in vivo targeting of immunoliposomal doxorubicin to human B-cell lymphoma. Cancer Res 58:3320–3330.
  • Martin, F. J., Hubell, W. L., Papahadjopoulos, D. (1981). Immunospecific targeting of liposomes to cells: a novel and efficient method for covalent attachment of Fab’ fragments via disulphide bonds. Biochemistry 20:4229–4238.
  • Martin, F. J., Papahadjopoulos, D. (1982). Irreversible coupling of immunoglobulin fragments to preformed vesicles. J Biol Chem 257:286–288.
  • Maruyama, K. (2002). PEG-immunoliposome. Biosci Rep 22:251–266.
  • Mastrobattista, E., Koning, G. A., Storm, G. (1999a). Immunoliposomes for the targeted delivery of antitumor drugs. Adv Drug Deliv Rev 40:103–127.
  • Mastrobattista, E., Storm, G., van Bloois, L., Reszka, R., Bloemen, P. G., Crommelin, D. J., et al. (1999b). Cellular uptake of liposomes targeted to intercellular adhesion molecule-1 (ICAM-1) on bronchial epithelial cells. Biochim Biophys Acta 1419:353–363.
  • Metselaar, J. M., Storm, G. (2005). Liposomes in the treatment of inflammatory disorders. Exp Opin Drug Deliv 2:465–476.
  • Metselaar, J. M., Wauben, M. H., Wagenaar-Hilbers, J. P., Boerman, O. C., Storm, G. (2003). Complete remission of experimental arthritis by joint targeting of glucocorticoids with long-circulating liposomes. Arthr Rheum 48:2059–2066.
  • Mojcik, C. F., Shevach, E. M. (1997). Adhesion molecules: a rheumatologic perspective. Arthr Rheum 40:991–1004.
  • Murciano, J. C., Muro, S., Koniaris, L., Christofidou-Solomidou, M., Harshaw, D. W., Albelda, S. M., et al. (2003). ICAM-directed vascular immunotargeting of antithrombotic agents to the endothelial luminal surface. Blood 101:3977–3984.
  • Muro, S., Dziubla, T., Qiu, W., Leferovich, J., Cui, X., Berk, E. (2006a). Endothelial targeting of high-affinity multivalent polymer nanocarriers directed to intercellular adhesion molecule 1. Pharmacol Exp Ther 317:1161–1169.
  • Muro, S., Gajewski, C., Koval, M., Muzykantov, V. R. (2005). ICAM-1 recycling in endothelial cells: a novel pathway for sustained intracellular delivery and prolonged effects of drugs. Blood 105:650–658.
  • Muro, S., Garnacho, C., Champion, J. A., Leferovich, J., Gajewski, C., Schuchman, E. H., et al. (2008). Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1–targeted carriers. Mol Ther 16:1450–1458.
  • Muro, S., Koval, M., Muzykantov, V. (2004). Endothelial endocytic pathways: gates for vascular drug delivery. Curr Vasc Pharmacol 2:281–299.
  • Muro, S., Mateescu, M., Gajewski, C., Robinson, M., Muzykantov, V. R., Koval, M. (2006b). Control of intracellular trafficking of ICAM-1-targeted nanocarriers by endothelial Na+/H+ exchanger proteins. Am J Physiol Lung Cell Mol Physiol 290:L809–L817.
  • Muro, S., Muzykantov, V. R. (2005). Targeting of antioxidant and antithrombotic drugs to endothelial cell adhesion molecules. Curr Pharm Des 11:2383–2401.
  • Muro, S., Wiewrodt, R., Thomas, A., Koniaris, L., Albelda, S. M., Muzykantov, V. R., et al. (2003). A novel endocytic pathway induced by clustering endothelial ICAM-1 or PECAM-1. J Cell Sci 116:1599–1609.
  • Scholz, D., Devaux, B., Hirche, A., Potzsch, B., Kropp, B., Schaper, W., et al. (1996). Expression of adhesion molecules is specific and time-dependent in cytokine-stimulated endothelial cells in culture. Cell Tissue Res 284:415–423.
  • Senior, J. H. (1987). Fate and behavior of liposomes in vivo: a review of controlling factors. Crit Rev Ther Drug Carrier Syst 3:123–193.
  • Simone, E., Ding, D. S., Muzykantov, V. R. (2009). Targeted delivery of therapeutics to endothelium. Cell Tissue Res 335:283–300.
  • Spragg, D. D., Alford, D. R., Greferath, R., Larsen, C. E., Lee, K. D., Gurtner, G. C., et al. (1997). Immunotargeting of liposomes to activated vascular endothelial cells: a strategy for site-selective delivery in the cardiovascular system. Proc Natl Acad Sci U S A 94:8795–8800.
  • Torchilin, V. P. (1994). Immunoliposomes and PEGylated immunoliposomes: possible use for targeted delivery of imaging agents. Mmunomethods 4:244–258.
  • Torchilin, V. P. (1996). Affinity liposomes in vivo: factors influencing target accumulation. J Mol Recog 9:335–346.
  • Ulrich, A. S. (2002). Biophysical aspects of using liposomes as delivery vehicles. Biosci Rep 22:129–150.
  • Villanueva, F. S., Jankowski, R. J., Klibanov, S., Pina, M. L., Alber, S. M., Watkins, S. C. (1998). Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells. Circulation 98:1–5.
  • Vingerhoeds, M. H., Storm, G., Crommelin, D. J. (1994). Immunoliposomes in vivo. Mmunomethods 4:259–272.
  • Voinea, M., Manduteanu, I., Dragomir, E., Capraru, M., Simionescu, M. (2005). Immunoliposomes directed toward VCAM-1 interact specifically with activated endothelial cells—a potential tool for specific drug delivery. Pharm Res 22:1906–1917.
  • Willis, M., Forssen, E. (1998). Ligand-targeted liposomes. Adv Drug Deliv Rev 29:249–271.
  • Wolff, B., Gregoriadis, G. (1984). The use of monoclonal anti-Thy 1 IgG1 for the targeting of liposomes to AKR-A cells in vitro and in vivo. Biochim Biophys Acta 802:259–273.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.