246
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Micro-spherical cochleate composites: method development for monodispersed cochleate system

, , , , &
Pages 32-40 | Received 08 Sep 2015, Accepted 31 Jan 2016, Published online: 12 May 2016

References

  • Belliveau NM, Huft J, Lin PJC, et al (2012a). Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol Ther Nucleic Acids 1:e37
  • Belliveau NM, Huft J, Lin PJC, et al (2012b). Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol Ther Nucleic Acids 1:e37
  • Chanturiya A, Leikina E, Zimmerberg J, Chernomordik LV. (1999). Short-chain alcohols promote an early stage of membrane hemifusion. Biophys J 77:2035–45
  • Delmas G, Park S, Chen ZW, et al (2002). Efficacy of orally delivered cochleates containing amphotericin B in a murine model of Aspergillosis. Antimicrob Agents Chemother 46:2704–7
  • Feller SE, Brown CA, Nizza DT, Gawrisch K. (2002). Nuclear overhauser enhancement spectroscopy cross-relaxation rates and ethanol distribution across membranes. Biophys J 82:1396–404
  • Garidel P, Richter W, Rapp G, Blume A. (2001). Structural and morphological investigations of the formation of quasi-crystalline phases of 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG). Phys Chem Chem Phys 3:1504–13
  • Gould-Fogerite S, Kheiri M, Zhang F, Mannino RJ. (2000). Cochleate delivery vehicles: applications in vaccine delivery. J Liposome Res 10:339–58
  • Gould-Fogerite S, Mannino RJ. (2000). Cochleates for induction of mucosal and systemic immune responses. In: O'Hagan DT, ed. Vaccine adjuvants: preparation methods and research protocols. Vol. 42. Totowa (NJ): Springer, 179–96
  • Huergo CC, Gonzalez VGS, Vazquez MMG, et al (1997). Method of producing Neisseria meningitidis B vaccine, and vaccine produced by method. Google Patents US 5597572 A
  • Hung L-H, Lee AP. (2007). Microfluidic devices for the synthesis of nanoparticles and biomaterials. J Med Biomed Eng 27:1–6
  • Jin TBSI, Mannino RUMDNJ, Segarra IBSI, Zarif LBSI. (2001). Novel hydrogel isolated cochleate formulations, process of preparation and their use for the delivery of biologically relevant molecules. Google Patents EP 1143933 A2
  • Jin Y. (2008). Nanotechnology in pharmaceutical manufacturing. In: Gad SC, ed. Pharmaceutical manufacturing handbook: production and processes. New Jersey: Wiley, 1249–88
  • Kastner E, Kaur R, Lowry D, et al (2014). High-throughput manufacturing of size-tuned liposomes by a new microfluidics method using enhanced statistical tools for characterization. Int J Pharm 477:361–8
  • Kulkarni VS, Boggs JM, Brown RE. (1996). Modulation of nanotube assembly in simple sphingolipids. Prog Biophys Mol Biol 65:141
  • Kulkarni VS, Boggs JM, Brown RE. (1999). Modulation of nanotube formation by structural modifications of sphingolipids. Biophys J 77:319–30
  • Mannino RJ, Gould-Fogerite S. (2002). Cochleate delivery vehicles. Canada: Office CIP
  • Martin-Molina A, Rodriguez-Beas C, Faraudo J. (2012). Effect of calcium and magnesium on phosphatidylserine membranes: experiments and all-atomic simulations. Biophys J 102:2095–103
  • Nagarsekar K, Ashtikar M, Thamm J, et al (2014). Electron microscopy and theoretical modeling of cochleates. Langmuir 30:13143–51
  • Nie Z, Li W, Seo M, et al (2006). Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly. J Am Chem Soc 128:9408–12
  • Papahadjopoulos D, Nir S, Düzgünes N. (1990). Molecular mechanisms of calcium-induced membrane fusion. J Bioenerg Biomembr 22:157–79
  • Papahadjopoulos D, Poste G. (1975). Calcium-induced phase separation and fusion in phospholipid membranes. Biophys J 15:945–8
  • Papahadjopoulos D, Vail WJ, Jacobson K, Poste G. (1975). Cochleate lipid cylinders: formation by fusion of unilamellar lipid vesicles. Biochim Et Biophys Acta 394:483–91
  • Patra M, Salonen E, Terama E, et al (2006). Under the influence of alcohol: the effect of ethanol and methanol on lipid bilayers. Biophys J 90:1121–35
  • Perez A, Hernández R, Velasco D, et al (2015). Poly (lactic-co-glycolic acid) particles prepared by microfluidics and conventional methods. Modulated particle size and rheology. J Colloid Interf Sci 441:90–7
  • Poste G, Papahadjopoulos D, Vail WJ. (1976). Lipid vesicles as carriers for introducing biologically active materials into cells. Methods Cell Biol 14:33–71
  • Rao R, Squillante I, Emilio Kim KH. (2007). Lipid-based cochleates: a promising formulation platform for oral and parenteral delivery of therapeutic agents. Crit Rev Ther Drug Carrier Syst 24:41–62
  • Rasband WS. (1997–2014). ImageJ. Bethesda (MD): U.S. National Institutes of Health
  • Sankar VR, Reddy YD. (2010). Nanochchleates – a new approach in lipid drug delivery. Int J Pharm Pharm Sci 2:220–3
  • Sarig H, Ohana D, Epand RF, et al (2011). Functional studies of cochleate assemblies of an oligo-acyl-lysyl with lipid mixtures for combating bacterial multidrug resistance. FASEB J 25:3336–43
  • Syed UM, Woo AF, Plakogiannis F, et al (2008). Cochleates bridged by drug molecules. Int J Pharm 363:118–25
  • Touitou E, Dayan N, Bergelson L, et al (2000). Ethosomes – novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release 65:403–18
  • Wang N, Wang T, Zhang M, et al (2014). Using procedure of emulsification-lyophilization to form lipid A-incorporating cochleates as an effective oral mucosal vaccine adjuvant-delivery system (VADS). Int J Pharm 468:39–49
  • Whitesides GM. (2006). The origins and the future of microfluidics. Nature 442:368–73
  • Wilschut J, Duzgunes N, Hoekstra D, Papahadjopoulos D. (1985). Modulation of membrane fusion by membrane fluidity: temperature dependence of divalent cation induced fusion of phosphatidylserine vesicles. Biochemistry 24:8–14
  • Wilschut J, Duzgunes N, Papahadjopoulos D. (1981). Calcium/magnesium specificity in membrane fusion: kinetics of aggregation and fusion of phosphatidylserine vesicles and the role of bilayer curvature. Biochemistry 20:3126–33
  • Yu B, Lee RJ, Lee LJ. (2009). Microfluidic methods for production of liposomes. Methods Enzymol 465:129–41
  • Zarif L. (2002). Elongated supramolecular assemblies in drug delivery. J Control Release 81:7–23
  • Zarif L. (2005). Drug delivery by lipid cochleates. In: Nejat D, ed. Methods in enzymology. Massachusetts: Academic Press, 314–29
  • Zarif L, Graybill JR, Perlin D, et al (2000). Antifungal activity of amphotericin B cochleates against Candida albicans infection in a mouse model. Antimicrob Agents Chemother 44:1463–9
  • Zarif L, Jin T, Segarra I, Mannino RJ. (2003). Hydrogel-isolated cochleate formulations, process of preparation and their use for the delivery of biologically relevant molecules. US Patent number 6592894 B1
  • Zarif L, Mannino RJ. (2000). Cochleates. Lipid-based vehicles for gene delivery-concept, achievements and future development. Adv Exp Med Biol 465:83–93
  • Zayas C, González D, Acevedo R, et al (2013). Pilot scale production of the vaccine adjuvant proteoliposome derived Cochleates (AFCo1) from Neisseria meningitidis serogroup B. BMC Immunol 14:1–5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.