237
Views
67
CrossRef citations to date
0
Altmetric
Research Article

pH-Sensitive Liposomes

&
Pages 361-395 | Published online: 28 Sep 2008

References

  • Gregoriadis G., Allison A. C. “Liposomes in Biological System”. John Wiley & Sons, New York 1980
  • Szoka F. C., Jacobson K., Derzko Z., Papahadjopoulos D. Fluorescent studies on the mechanism of liposome-cell interactions in vitro. Biochim. Biophys. Acta 1980a; 600: 1–18
  • Straubinger R. M., Hong K., Friend D. S., Papahadjopoulos D. Endocytosis of liposomes and intracellular fate of encapsulated molecules: encounter with a low pH compartment after internalization in coated vesicles. Cell 1983; 32: 1069–1079
  • Dijkstra J., van Galen J. W. M., Hulstaert C. E., Kalicharan D., Roerdink F. H., Scherphof G. L. Interaction of liposomes with Kupffer cells in vitro. Exp. Cell Res. 1984; 150: 161–176
  • Szoka F. C. The cellular availability of liposome-encapsulated agents: consequences for drug delivery. “Medical Aplication of Liposomes”, K. Yagi. Japan Scientific Press, Tokyo 1986; 21–30
  • White J., Kielian M., Helenius A. Membrane fusion proteins of enveloped animal viruses. Quart. Rev. Biophys. 1983; 16: 151–195
  • Marsh M. The entry of enveloped viruses into cells by endocytosis. Biochem. J. 1984; 218: 1–10
  • Spear P. G. Virus-induced cell fusion. “Cell Fusion”, A. E. Sowers. Plenum Press, New York 1987; 3–43
  • Uchida T., Kim J., Yamaizumi M., Miyake Y., Okada Y. Reconsititution of lipid vesicles associated with HVL (Sendai virus) spikes: purification and some properties of vesicles containing nontoxic fragment A of diphtheria toxin. J Cell Biol. 1979; 80: 10–20
  • Nakanishi M., Uchida T., Sugawa H., Ishiura M., Okada Y. Efficient introduction of contents of liposomes into cells using HVJ (Sendai virus). Exp. Cell Res. 1985; 159: 399–409
  • Gould-Fogerite S., Mazurkiewicz J. E., Raska K., Voelkerding K., Lehman J. M., Mannino R. J. Chimerasome-mediated gene transfer in vitro and in vivo. Gene 1989; 84: 429–438
  • Schlegel R., Wade M. A synthetic peptide corresponding to the NH2 terminus of vesicular stomatitis virus glycoprotein is a pH-dependent hemolysin. J. Biol. Chem. 1984; 259: 4691–4694
  • Murata M., Sugahara Y., Takahashi S., Ohnishi S. pH-dependent membrane fusion activity of a synthetic twenty amino acid peptide with the same sequence as that of the hydrophobic segment of influenza virus hemagglutinin. J Biochem. 1987; 102: 957–962
  • Parente R. A., Nir S., Szoka F. C. pH-dependent fusion of phosphatidylcholine small vesicles induction by a synthetic amphipathic peptide. J. Biol. Chem. 1988; 263: 4724–4730
  • Yatvin M. B., Kreutz W., Horwitz B. A., Shinitzky M. pH-sensitive liposomes: possible clinical implications. Science 1980; 210: 1253–1255
  • Siegel D. P. Membrane-membrane interactions via intermediates in lamellar to inverted hexagonal phase transitions. “Cell Fusion”, A. E. Sowers. Plenum Press, New York 1987; 181–207
  • Seddon J. M. Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids. Biochim. Biophys. Acta 1990; 1031: 1–69
  • Tycko B., Maxfield F. R. Rapid acidification of endocytic vesicles containing α2-macroglobulin. Cell 1982; 28: 643–651
  • Litzinger D. C., Huang L. Phosphatidylethanolamine liposomes: drug delivery, gene transfer and immunodiagnostic applications. Biochim. Biophys. Acta 1992; 1113: 201–227
  • Allen T. M., Hong K., Papahadjopoulos D. Membrane contact, fusion, and hexagonal transitions in phosphatidylethanolamine liposomes. Biochemistry 1990; 29: 2976–2985
  • Cullis P. R., de Kruijff B., Hope M. J., Verkleij A. J., Nayer R., Farren S. B., Tilcock C., Madden T. D., Bally M. B. Structure properties of lipids and thier functional roles in biological membranes. “Membrane Fluidity in Biology”, R. C. Aloia. Academic Press, New York 1983; 39–81
  • Hauser H., Pascher I., Pearson R. H., Sundell S. Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidylcholine. Biochim. Biophys. Acta 1981; 650: 21–51
  • Papahadjopoulos D., Miller N. Phospholipid model membrane I: structure characterization of hydrated liquid crystal. Biochim. Biophys. Acta 1967; 135: 624–638
  • Hope M. J., Walker D. C., Cullis P. R. Ca2+ and pH induced fusion of small unilamellar vesicles consisting of phosphatidylethanolamine and negatively charged phospholipids: a freeze fracture study. Biochem. Biophys. Res. Commun. 1983; 110: 15–22
  • Lai M. Z., Vail W. J., Szoka F. C. Acid- and calcium- induced structure changes in phosphatidylethanolamine membranes stabilized by cholesteryl hemisuccinate. Biochemistry 1985; 24: 1654–1661
  • Düzgünes N., Straubinger R. M., Baldwin P. A., Freind D. S., Papahadjopoulos D. Proton-induced fusion of oleic acids-phosphatidylethanolamine liposomes. Biochemistry 1985; 24: 3091–3098
  • Bondeson J., Wijkander J., Sundler R. Proton-induced membrane fusion: role of phospholipid composition and protein-mediated intermembrane contact. Biochim. Biophys. Acta 1984; 777: 21–27
  • Nayar R., Schroit A. Generation of pH-sensitive liposomes: use of large unilamellar vesicles containing N-succinyldioleoylphosphatidylethanolamine. Biochemistry 1985; 24: 5967–5971
  • Greidziak M., Bogdanov A. A., Torchilin V. P., Lasch J. Destabilization of pH-sensitive liposomes in the presence of human erythrocyte ghosts. J. Controlled Release 1992; 20: 219–230
  • Connor J., Yatvin M. B., Huang L. pH-sensitive liposomes: acid-induced liposome fusion. Proc. Natl. Acad. Sci. USA 1984; 81: 1715–1718
  • Harding C. V., Unanue E. R. Cellular mechanisms of antigen processing and the function of class I and II major histocompatibility complex molecules. Cell Regulation 1990; 1: 499–509
  • Harding C. V., Collins D. S., Kanagawa O., Unanue E. Liposome-encapsulated antigens engender lysosomal processing for class II MHC presentation and cytosolic processing for class I presentation I. Immunology 1991; 1479: 2860–2863
  • Connor J., Huang L. Efficient cytoplasmic delivery of a fluorescent dye by pH-sensitive immunoliposomes. J. Cell Biol. 1985; 101: 582–589
  • Düzgünes N., Hong K., Baldwin P. A., Bentz J., Nir S., Papahadjopoulos D. Fusion of phospholipid vesicles induced by divalent cations and protons: modulation by phase transitions, free fatty acids, monovalent cations, and polyamines. “Cell Fusion”, A. E. Sowers. Plenum Press, New York 1987; 241–267
  • Straubinger R. M., Düzgünes N., Papahadjopoulos D. pH-sensitive liposomes mediate cytoplasmic delivery of encapsulated macromolecules. FEBS Lett. 1985; 179: 148–154
  • Baldwin P. A., Straubinger R. M., Papahadjopoulos D. Enhanced delivery of pokeweed antiviral protein to cultured cells by pH-sensitive liposomes. J. Cell Biol. 1986; 103: 57a
  • Connor J., Huang L. pH-sensitive immunoliposomes as an efficient and target-specific carrier for antitumor drugs. Cancer Res. 1986; 46: 3431–3435
  • Collins D., Huang L. Cytotoxicity of diphtheria toxin A fragment to toxin-resistant murine cells delivered by pH-sensitive immunoliposomes. Cancer Res. 1987; 47: 735–739
  • Liu D., Huang L. Role of cholesterol in the stability of pH-sensitive, large unilamellar liposomes prepared by the detergent-dialysis method. Biochim. Biophys. Acta 1989; 981: 254–260
  • Wang C. Y., Huang L. Highly efficient DNA delivery mediated by pH-sensitive immunoliposomes. Biochemistry 1989; 28: 9508–9514
  • Oberg C., Welsh N. Nonspecific delivery of substances into pancreatic islet cells by pH-sensitive liposomes in vitro. Diabete Metab. 1990; 16: 48–54
  • Ropert C., Lavignon M., Dubernet C., Couvreur P., Malvy C. Oligonuceotides encapsulated in pH sensitive liposomes are efficient toward Friend retrovirus. Biochem. Biophys. Res. Commun. 1992; 183: 879–885
  • Milhaud P. G., Compagnon B., Bienvenue A., Philippot J. R. Interferon production of L929 and HeLa cells enhanced by polyriboinosinic acid-polyribocytidylic acid pH-sensitive liposomes. Bioconjugate Chem. 1992; 3: 402–407
  • Hazemoto N., Harda M., Komatsubara N., Haga M., Kato Y. pH-sensitive liposomes composed of phosphatidylethanolamine and fatty acid. Chem. Pharm. Bull. 1990; 38: 748–751
  • Choi M. J., Han H. S., Kim H. pH-sensitive liposomes containing polymerized phosphatidylethanolamine and fatty acid. J. Biochem. (Japan) 1992; 112: 694–699
  • Ellens H., Bentz J., Szoka F. C. pH-induced destabilization of phosphatidylethanolamine-containing liposomes: role of bilayer contact. Biochemistry 1984; 23: 1532–1538
  • Lai M. Z., Düzgünes N., Szoka F. C. Effect of replacement of the hydroxyl group of cholesterol and tocopherol on the thermotropic behavior of phospholipid membranes. Biochemistry 1985; 24: 1646–1653
  • Ellens H., Bentz J., Szoka F. C. H+- and Ca2+-induced fusion and destabilization of liposomes. Biochemistry 1985; 24: 3099–3106
  • Chu C. J., Dijkstra J., Lai M. Z., Hong K., Szoka F. C. Efficiency of cytoplasmic deivery by pH-sensitive liposomes to cells in culture. Pharm. Res. 1990; 7: 824–834
  • Legendre J. Y., Szoka F. C. Delivery of plasmid DNA into mammalian cell lines using pH-sensitive liposomes: comparison with cationic liposomes. Pharm. Res. 1992; 9: 1235–1242
  • Collins D. S., Finflay K., Harding C. V. Processing of exogenous liposome-encapsulated antigens in vivo generates class I MHC-restricted T cell responses. J. Immunol. 1992; 148: 3336–3341
  • Epand R. M., Cheetham J. J., Raymer K. E. Acid-induced fusion of liposomes: studies with 2, 3-seco-5α-cholestan-2,3-dioic acid. Biochim. Biophys. Acta 1988; 940: 85–92
  • Leventis R., Diacovo T., Silvius J. R. pH-dependent stability and fusion of liposomes combining protonatable double-chain amphiphiles with phosphatidylethanolamine. Biochemistry 1987; 26: 3267–3276
  • Collins D., Litzinger D. C., Huang L. Structural and functional comparisons of phosphatidylethanolamine and three different diacylsuccinylglycerol. Biochim. Biophys. Acta 1990; 1025: 234–242
  • Reddy R., Zhou F., Huang L., Carbone F., Beven M., Rouse B. T. pH-sensitive liposomes provide an efficient means of sensitizing target cells to class I restricted CTL recognition of a soluble protein. J. Immunol. Methods 1991; 141: 157–163
  • Nair S., Zhou F., Reddy R., Huang L., Rouse B. T. Soluble proteins delivered to dendritic cells via pH-sensitive liposomes induce primary cytotoxic T lymphocyte responses in vitro. J. Exp. Med. 1992; 175: 609–612
  • Reddy R., Zhou F., Nair S., Huang L., Rouse B. T. In vivo cytotoxic T lymphocyte induction with soluble proteins administered in liposomes. J. Immunol. 1992; 148: 1585–1589
  • Connor J., Norley N., Huang L. Biodistribution of pH-sensitive immunoliposomes. Biochim. Biophys. Acta 1986; 884: 474–481
  • Wang C. Y., Huang L. pH-sensitive immunoliposomes mediate target cell specific delivery and controlled expression of a foreign gene in mouse. Proc. Natl. Acad. Sci. USA 1987; 84: 7851–7855
  • Liu D., Huang L. pH-sensitive, plasma stable liposomes with relatively prolonged residence in circulation. Biochim. Biophys. Acta 1990; 1022: 348–354
  • Collins D., Maxfield F. R., Huang L. Immunoliposomes with different acid sensitivities as probes for the cellular endocytic pathway. Biochim. Biophys. Acta 1989; 987: 47–55
  • Torchilin V. P., Lukyanov A. N., Klibanov A. L., Omelyanenko V. G. Interaction between oleic acid-containing pH-sensitive and plain liposomes. FEBS Lett. 1992; 305: 185–188
  • Heath T. D., Montgomery J. A., Piper J. R., Papahadjopoulos D. Antibody-targeted liposomes: increase in specific toxicity of methotrexate-γ-aspartate. Proc. Natl. Acad. Sci. USA 1983; 80: 1377–1381
  • Matthay K. M, Heath T. D., Papahadjopoulos D. Specific enhancement of drug delivery to AKR lymphoma by antibody-targeted small unilamellar vesicles. Cancer Res. 1984; 44: 1880–1886
  • Schroit A.J., Madsen J., Nayer R. Liposome-cell interactions: in vitro discrimination of uptake mechanism and in vivo targeting strategies to mononuclear phagocytes. Chem. Phys. Lipid 1986; 40: 373–393
  • Ho R. J. Y., Rouse B. T., Hunag L. Target-sensitive immunoliposomes: preparation and characterization. Biochemistry 1986; 25: 5500–5506
  • Tycko B., Keith C. H., Maxfield F. R. Rapid acidification of endocytic vesicles containing asialoglycoprotein in cells of a human hepatoma line. J. Cell Biol. 1983; 97: 1762–1776
  • Juliano R. L. Interactions of proteins and drugs with liposomes. “Liposomes”, M. J. Ostro. Marcel Dekker, New York 1983; 53–86
  • Senior J. H. Fate and behavior of liposomes in vivo: a review of controlling factors. Crit. Rev. Ther. Drug Carrier Syst. 1986; 3: 123–193
  • Lai M. Z. Characterization of Cholesterylhemisuccinate- and Tocopherol Acid Succinate- Phospholipid Membranes: Phase Behavior of pH-sensitive Liposomes. pH.D. Thesis. University of California, San Francisico 1984

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.