946
Views
34
CrossRef citations to date
0
Altmetric
Review Article

Review of the Series “Disease of the Year 2011: Toxoplasmosis” Pathophysiology of Toxoplasmosis

, &
Pages 297-306 | Received 20 Feb 2010, Accepted 06 Oct 2010, Published online: 04 Oct 2011

REFERENCES

  • Tenter AM, Heckeroth AR, Weiss LM. Toxoplasma gondii: from animals to humans. Int J Parasitol. 2000;30:1217–1258.
  • Woods AC, Jacobs L, Wood RM. A study of the role of toxoplasmosis in adult chorioretinitis. Am J Ophthalmol. 1954;37:163–177.
  • McCannel CA, Holland GN, Helm CJ, Cornell PJ, Winston JV, Rimmer TG. Causes of uveitis in the general practice of ophthalmology. UCLA Community-Based Uveitis Study Group. Am J Ophthalmol. 1996;121:35–46.
  • Subauste CS, Montoya JG, Remington JS. 2008. AIDS-associated toxoplasmosis. In: Volberding, PA, Sande, MA, Greene, WC, Lange, JMA. (Eds.), Global HIV/AIDS Medicine. 399–413. Philadelphia, PA: Saunders Elsevier.
  • Mets MB, Holfels E, Boyer KM, et al. Eye manifestations of congenital toxoplasmosis. Am J Ophthalmol. 1997;123:1–16.
  • Glasner PD, Silveira C, Kruszon-Moran D, et al. An unusually high prevalence of ocular toxoplasmosis in southern Brazil. Am J Ophthalmol. 1992;114:136–144.
  • Gilbert RE, Stanford MR. Is ocular toxoplasmosis caused by prenatal or postnatal infection? B. J Ophthalmol. 2000;84:224–226.
  • Friedmann CT, Knox DL. Variations in recurrent active toxoplasmic retinochoroiditis. Arch Ophthalmol. 1969;81:481–493.
  • Pavesio CE, Lightman S. Toxoplasma gondii and ocular toxoplasmosis: pathogenesis. Br J Ophthalmol. 1996;80:1099–1107.
  • Holland GN. Ocular toxoplasmosis: a global reassessment, part I: epidemiology and course of disease. Am J Ophthalmol. 2003;136:973–988.
  • Zimmerman LE. Ocular pathology of toxoplasmosis. Surv Ophthalmol. 1961;6:832–838.
  • Norose K, Mun H-S, Aosai F, et al. IFN-γ-regulated Toxoplasma gondii distribution and load in the murine eye. Invest Ophthalmol Vis Sci,. 2003;44:4375–4381.
  • Lambert H, Hitziger N, Dellacasa I, Svensson M, Barragan A. Induction of dendritic cell migration upon Toxoplasma gondii infection potentiates parasite dissemination. Cell Microbiol. 2006;8:1611–1623.
  • Courret N, Darche S, Sonigo P, Milon G, Buzoni-Gatel D, Tardieux I. CD11c- and CD11b-expressing mouse leukocytes transport single Toxoplasma gondii tachyzoites to the brain. Blood. 2006;107:309–316.
  • Smith JR, Franc DT, Carter NS, Zamora D, Planck SR, Rosenbaum JT. Susceptibility of retinal vascular endothelium to infection with Toxoplasma gondii tachyzoites. Invest Ophthalmol Vis Sci,. 2004;45:1157–1161.
  • Meenken C, Rothova A, de Waal LP, van der Horst AR, Mesman BJ, Kijlstra A. HLA typing in congenital toxoplasmosis. Br J Ophthalmol. 1995;79:494–497.
  • Jamieson SE, de Roubaix L-A, Cortina-Borja M, et alGenetic and epigenetic factors at COL2A1 and ABCA4 influence clinical outcome in congenital toxoplasmosis. Plos One. 2008;3:e2285.
  • Jamieson SE, Peixoto-Rangel AL, Hargrave AC, et alEvidence for associations between the purinergic receptor P2X7 (P2RX7) and toxoplasmosis. Genes Immun. 2010;11:374–383.
  • Cordeiro CA, Moreira PR, Andrade MS, et al. Interleukin–10 gene polymorphism (–1082G/A) is associated with toxoplasmic retinochoroiditis. Invest Ophthalmol. Vis. Sci,. 2008;49:1979–1982.
  • Albuquerque MC, Aleixo AL, Benchimol EI, et al. The IFN–gamma +874T/A gene polymorphism is associated with retinochoroiditis toxoplasmosis susceptibility. Mem Inst Oswaldo Cruz. 2009;104:451–455.
  • Yamamoto JH, Vallochi AL, Silveira C, et al. Discrimination between patients with acquired toxoplasmosis and congenital toxoplasmosis on the basis of the immune response to parasite antigens. J Infect Dis. 2000;181:2018–2022.
  • Ayanru JO. The problem of uveitis in Bendel State of Nigeria: experience in Benin City. Br J Ophthalmol. 1977;61:655–659.
  • Ronday MJ, Stilma JS, Barbe RF, et al. Aetiology of uveitis in Sierra Leone, West Africa. Br J Ophthalmol. 1996;80:956–961.
  • Gilbert RE, Freeman K, Lago EG, et al. Ocular sequelae of congenital toxoplasmosis in Brazil compared with Europe. PLoS Negl Trop Dis. 2008;2:e277.
  • Gilbert RE, Stanford MR, Jackson H, Holliman RE, Sanders MD. Incidence of acute symptomatic toxoplasma retinochoroiditis in south London according to country of birth. BMJ. 1995;310:1037–1040.
  • de la Torre A, Gonzales G, Diaz–Ramirez J, Gomez–Marin JE. Screening by ophthalmoscopy for toxoplasma retinochoroiditis in Colombia. Am J Ophthalmol. 2007;143:354–356.
  • Ajzenberg D, Cogne N, Paris L, et al. Genotype of 86 Toxoplasma gondii isolates associated with human congenital toxoplasmosis, and correlation with clinical findings. J Infect Dis. 2002;186:684–689.
  • Halos L, Thebault A, Aubert D, et al. An innovative survey underlining the significant level of contamination by Toxoplasma gondii of ovine meat consumed in France. Int J Parasitol. 2010;40:193–200.
  • Ajzenberg D, Yera H, Marty P, et al. Genotype of 88 Toxoplasma gondii isolates associated with toxoplasmosis in immunocompromised patients and correlation with clinical findings. J Infect Dis. 2009;199:1155–1167.
  • [30]Elbez–Rubinstein A, Ajzenberg D, Darde ML, et al. Congenital toxoplasmosis and reinfection during pregnancy: case report, strain characterization, experimental model of reinfection and review. J Infect Dis. 2009;199:280–285.
  • Howe DK, Sibley LD. Toxoplasma gondii comprises three clonal lineages: correlation of parasite genotypes with human disease. J Infect Dis. 1995;172:1561–1566.
  • Dubey JP, Quirk T, Pitt JA, et al. Isolation and genetic characterization of Toxoplasma gondii from racoons (Procyon lotor), cats (Felis domesticus), striped skunk (Mephitis mephitis), black bear (Ursus americanus), and cougar (Puma concolor). from Canada. J Parasitol. 2008;94:42–45.
  • Dubey JP, Sundar N, Hill D, et al. High prevalence and abundant atypical genotypes of Toxoplasma gondii isolated from lambs destined for human consumption in the USA. Int J Parasitol. 2008;38:999–1006.
  • Ajzenberg D, Banuls AL, Su C, et al. Genetic diversity, clonality and sexuality in Toxoplasma gondii. Int J Parasitol. 2004;34:1185–1196.
  • Khan A, Fux B, Su C, et al. Recent transcontinental sweep of Toxoplasma gondii driven by a single monomorphic chromosome. Proc Natl Acad Sci USA. 2007;104:14872–14877.
  • Pena HF, Gennari SM, Dubey JP, Su C. Population structure and mosue–virulence of Toxoplasma gondii in Brazil. Int J Parasitol. 2008;38:561–569.
  • Velmurugan GV, Dubey JP, Su C. Genotyping studies of Toxoplasma gondii isolates from Africa revealed that the archetypal clonal lineages predominate as in North America and Europe. Vet Parasitol. 2008;155:314–318.
  • Mercier A, Devillard S, Ngoubangoye B, et al. Additional haplogroups of Toxoplasma gondii out of Africa: population structure and mosue virulence of strains from Gabon. PLoS Negl Trop Dis. 2010;4:e876.
  • Neves ES, Bicudo LN, Curi AL, et al. Acute acquired toxoplasmosis: clinical–laboratorial aspects and ophthalmologic evaluation in a cohort of immunocompetent patients. Mem Inst Oswaldo Cruz. 2009;104:393–396.
  • Carme B, Demar M, Ajzenberg D, Darde ML. Severe acquired toxoplasmosis caused by wild cycle of Toxoplasma gondii, French Guiana. Emerg Infect Dis. 2009;15:656–658.
  • Delhaes L, Ajzenberg D, Sicot B, et al. Severe congenital toxoplasmosis due to a Toxoplasma gondii strain with an atypical genotype: case report and review. Prenat Diagn. 2010;30:902–905.
  • Bowie WR, King AS, Werker DH, et al. Outbreak of toxoplasmosis associated with municipal drinking water: The BC Toxoplasma Investigation Team. Lancet. 1997;350:173–177.
  • Vallochi AL, Muccioli C, Martins MC, Silveira C, Belfort RJ, Rizzo LV. The genotype of Toxoplasma gondii strains causing ocular toxoplasmosis in humans in Brazil. Am J Ophthalmol. 2005;139:350–351.
  • Khan A, Jordan C, Muccioli C, et al. Genetic divergence of Toxoplasma gondii strains associated with ocular toxoplasmosis, Brazil. Emerg. Infect Dis. 2006;12:942–949.
  • Fekkar A, Ajzenberg D, B. B, et al. Direct genotyping of Toxoplasma gondii in ocular fluid samples from 20 patients with ocular toxoplasmosis: predominance of type II in France. J Clin Microbiol. 2011: Epub ahead of print.
  • Grigg ME, Ganatra J, Boothroyd JC. T.P.M. Unusual abundance of atypical strains associated with human ocular toxoplasmosis. J Infect Dis. 2001;184:633–639.
  • Silveira C, Vallochi AL, Rodrigues da Silva U, et al. Toxoplasma gondii in the peripheral blood of patients with acute and chronic toxoplasmosis. Br J Ophthalmol. 2010: Epub ahead of print.
  • Switaj K, Master A, Borkowski PK, Skrzypczak M, Wojciechowicz J, Zaborowski P. Association of ocular toxoplasmosis with type I Toxoplasma gondii strains: direct genotyping from peripheral blood samples. J Clin Microbiol. 2006;44:4262–4264.
  • Nowakowska D, Colon I, Remington JS, et al. Genotyping of Toxoplasma gondii by multiplex PCR and peptide–based serological testing of samples from infants in Poland diagnosed with congenital toxoplasmosis. J Clin Microbiol. 2006;44:1382–1389.
  • Morisset S, Peyron F, Lobry JR, et al. Serotyping of Toxoplasma gondii: striking homogeneous pattern between symptomatic and asymptomatic infections within Europe and South America. Microbes Infect. 2008;10:742–747.
  • Hu MS, Schwartzman JD, Lepage AC, Khan IA, Kasper LH. Experimental ocular toxoplasmosis induced in naive and preinfected mice by intracameral inoculation. Ocul Immunol Inflamm. 1999;7:17–26.
  • Hu MS, Schwartzman JD, Yeaman GR, et al. Fas–FasL interaction involved in pathogenesis of ocular toxoplasmosis in mice. Infect Immun. 1999;67:928–935.
  • Lu F, Huang S, Kasper LH. CD4+ T cells in the pathogenesis of murine ocular toxoplasmosis. Infect Immun. 2004;72:4966–4972.
  • Charles E, Callegan MC, Blander IJ. The SAG1 Toxoplasma gondii surface protein is not required for acute ocular toxoplasmosis in mice. Infect Immun. 2007;75:2079–2083.
  • Tedesco RC, Smith RL, Corte–Real S, Calabrese KS. Ocular toxoplasmosis in mice: comparison of two routes of infection. Parasitology. 2005;131:303–307.
  • McMenamin PG, Dutton GN, Hay J, S.C, . The ultrastructural pathology of congenital murine toxoplasmic retinochoroiditis, part I: The localization and morphology of Toxoplasma cysts in the retina. Ex. Eye Res. 1986;43:529–543.
  • Suzuki Y, Orellana MA, Schreiber RD, Remington JS. Interferon–γ: the major mediator of resistance against Toxoplasma gondii. Science. 1988;240:516–518.
  • Suzuki Y, Conley FK, Remington JS. Importance of endogenous IFN–γ for prevention of toxoplasmic encephalitis in mice. J Immunol. 1989;143:2045–2050.
  • Gazzinelli RT, Wysocka M, Hayashi S, et al. Parasite–induced IL–12 stimulates early IFN–γ synthesis and resistance during acute infection with Toxoplasma gondii. J Immunol. 1994;153:2533–2543.
  • Yap G, Pesin M, Sher A. IL–12 is required for the maintenance of IFN–γ production in T cells mediating chronic resistance to the intracellular pathogen, Toxoplasma gondii. J Immunol. 2000;165:628–631.
  • Gazzinelli RT, Brezin A, Li Q, Nussenblatt RB, Chan CC. Toxoplasma gondii: acquired ocular toxoplasmosis in the murine model, protective role of TNF–α and IFN–γ. Exp Parasitol. 1994;78:217–229.
  • Norose K, Aosai F, Mizota A, Yamamoto S, Mun H–,S Yano, A. Deterioration of visual function as examined by electroretinograms in Toxoplasma gondii–infected IFN–γ–knockout mice. Invest Ophthalmol Vis. Sci,. 2005;46:317–321.
  • Lassoued S, Zabraniecki L, Marin F, Billey T. Toxoplasmic chorioretinitis and antitumor necrosis factor treatment in rheumatoid arthritis. Semin Arthritis Rheum. 2007;36:262–263.
  • Roberts F, Roberts CW, Ferguson DJP, McLeod R. Inhibition of nitric oxide production exacerbates chronic ocular toxoplasmosis. Parasite Immunol. 2000;22:1–5.
  • Portillo J–,AC Okenka, G, Reed E, et al. The CD40–autophagy pathway is needed for host protection despite IFN–γ–dependent immunity and CD40 induces autophagy via control of p21 levels. Plos One. 2010;e14472.
  • Shen DF, Mattheson DM, Tuaillon N, Suedekum BK, Buggage RR, Chan C–C,. Involvement of apoptosis and interferon–γ in murine toxoplasmosis. Invest Ophthalmol Vis Sci,. 2001;42:2031–2036.
  • Hayashi S, Chan C–C,Gazzinelli, RT, Pham NTH, Cheung MK, Roberge FG. Protective role of nitric oxide in ocular toxoplasmosis. Br J Ophthalmol. 1996;80:644–648.
  • Naginemi CN, Pardhasaradhi K, Martins MC, Detrick B, Hooks JJ. Mechanisms of interferon–induced inhibition of Toxoplasma gondii replication in human retinal pigment epithelial cells. Infect Immun. 1996;64:4188–4196.
  • Lyons RE, Anthony JP, Ferguson DJP, Alexander J, Roberts F, Roberts CW. Immunological studies of chronic ocular toxoplasmosis: up–regulation of major histocompatibility complex class I and transforming growth factor β and a protective role for interleukin–6. Infect Immun. 2001;69:2589–2595.
  • Suzuki Y, Yang Q, Conley FK, Abrams JS, Remington JS. Antibody against interleikin–6 reduces inflammation and numbers of cysts in brains of mice with toxoplasmic encephalitis. Infect Immun. 1994;62:2773–2778.
  • Jebbari H, Roberts CW, Ferguson DJP, Bluethmann H, Alexander J. A protective role for IL–6 during early infection with Toxoplasma gondii. Parasite Immunol. 1998;20:231–239.
  • Suzuki Y, Remington JS. Dual regulation of resistance against Toxoplasma gondii infection by Lyt–2+ and Lyt–1+, L3T4+ T cells in mice. J Immunol. 1988;140:3943–3946.
  • Gazzinelli R, Xu Y, Hieny S, Cheever A, Sher A. Simultaneous depletion of CD4+ and CD8+ T lymphocytes is required to reactivate chronic infection with Toxoplasma gondii. J Immunol. 1992;149:175–180.
  • Norose K, Kikumura A, Luster AD, Hunter CA, Harris TH. CXCL10 is required to maintain T cell populations and control parasite replication during chronic ocular toxoplasmosis. Invest Ophthalmol Vis Sci,. 2010; Epub ahead of print.
  • Subauste CS, Koniaris AH, Remington JS. Murine CD8+ cytotoxic T lymphocytes lyse Toxoplasma gondii–infected cells. J Immunol. 1991;147:3955–3959.
  • Montoya JG, Lowe KE, Clayberger C, et al. Human CD4+ and CD8+ T lymphocytes are both cytotoxic to Toxoplasma gondii–infected cells. Infect Immun. 1996;64:176–181.
  • Denkers EY, Yap G, Scharton–Kersten T, et al. Perforin–mediated cytolysis plays a limited role in host resistance to Toxoplasma gondii. J Immunol. 1997;159:1903–1908.
  • Brown CR, McLeod R. Class I MHC genes and CD8+ T cells determine cyst number in Toxoplasma gondii infection. J Immunol. 1990;145:3438–3441.
  • Lu F, Huang S, Hu MS, Kasper LH. Experimental ocular toxoplasmosis in genetically susceptible and resistant mice. Infect Immun. 2005;73:5160–5165.
  • van Kooten C, Banchereau J. CD40–CD40 ligand. J Leuk Biol. 2000;67:2–17.
  • Subauste CS. Primary immunodeficiencies and susceptibility to parasitic infections. Parasite Immunol. 2006;28:567–575.
  • Reichmann G, Walker W, Villegas EN, et al. The CD40/CD40 ligand interaction is required for resistance to toxoplasmic encephalitis. Infect Immun. 2000;68:1312–1318.
  • Andrade RM, Wessendarp M, Gubbels MJ, Striepen B, Subauste CS. CD40 induces macrophage anti–Toxoplasma gondii activity by triggering autophagy–dependent fusion of pathogen–containing vacuoles and lysosomes. J Clin Invest. 2006;116:2366–2377.
  • Subauste CS. Autophagy and immunity against Toxoplasma gondii. Curr Topics Microbiol Immunol. 2009;335:251–265.
  • Liesenfeld O, Kosek J, Remington JS, Suzuki Y. Association of CD4+ T cell–dependent, interferon–γ–mediated necrosis of the small intestine with genetic susceptibility of mice to peroral infection with Toxoplasma gondii. J Exp Med. 1996;184:597–607.
  • Gazzinelli RT, Wysocka M, Hieny S, et al. In the absence of endogenous IL–10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune response dependent on CD4+ T cells and accompanied by overproduction of IL–12, IFN–γ, and TNF–α. J Immunol. 1996;157:798–805.
  • Suzuki Y, Sher A, Yap G, et al. IL–10 is required for prevention of necrosis in the small intestine and mortality in both genetically resistant BALB/c and susceptible C57BL/6 mice following peroral infection with Toxoplasma gondii. J Immunol. 2000;164:5375–5382.
  • Wilson EH, Wille–Reece U, Dzierszinski F, Hunter CA. A critical role for IL–10 in limiting inflammation during toxoplasmic encephalitis. J Neuroimmunol. 2005;165:63–74.
  • Lu F, Huang S, Kasper LH. Interleukin–10 and pathogenesis of murine ocular toxoplasmosis. Infect Immun. 2003;71:7159–7163.
  • Charles E, Joshi S, Ash JD, et al. CD4 T–cell suppression by cells from Toxoplasma gondii–infected retinas is mediated by surface protein PD–L1. Infect Immun. 2010;78:3484–3492.
  • Stein–Streilein J. Immure regulation and the eye. Trends Immunol. 29:548–554.
  • Nagineni CN, Detrick B, Hooks JJ. Transforming growth factor–β expression in human retinal pigmented epithelial cells is enhanced by Toxoplasma gondii: a possible role in the immunopathogenesis of retinochoroiditis. Clin Exp Immunol. 2002;128:372–378.
  • Jones LA, Alexander J, Roberts CW. Ocular toxoplasmosis: in the storm of the eye. Parasite Immunol. 2006;28:635–642.
  • Ohta K, Yamagami S, Taylor AW, Streilein JW. IL–6 antagonizes TGF–beta and abolishes immune privilege in eyes with endotoxin–induced uveitis. Invest Ophthalmol Vis Sci,. 2000;41:2591–2599.
  • Tedesco RC, Smith RL, Corte–Real S, Calabrese KS. Ocular toxoplasmosis: the role of retinal pigment epithelium migration in infection. Parasitol Res. 2004;92:467–472.
  • Naginemi CN, Detrick B, Hooks JJ. Toxoplasma gondii infection induces gene expression and secretion of interleukin 1 (IL–1), IL–6, granulocyte–macrophage ceolony–stimulating factor, and intercellular adhesion molecule 1 by human retinal epithelial cells. Infect Immun. 2000;68:407–410.
  • Kang H, Remington JS, Suzuki Y. Decreased resistance of B cell–deficient mice to infection with Toxoplasma gondii despite unimpaired expression of IFN–γ, TNF–α, and inducible nitric oxide synthase. J Immunol. 2000;164:2629–2643.
  • Stumhofer JS, Laurence A, Wilson EH, et al. Interleukin 27 negatively regulates the development of interleukin 17–producing T helper cells during chronic inflammation of the central nervous system. Nat Immunol. 2006;7:937–945.
  • Munoz M, Heimesaat MM, Danker K, et al. Interleukin (IL)–23 mediates Toxoplasma gondii–induced immunopathology in the gut via matrixmetalloproteinase–2 and IL–22 but independent of IL–17. J Exp Med. 2009;206:3047–3059.
  • Guiton R, Vasseur V, Charron S, et al. Interleukin 17 receptor signaling is deleterious during Toxoplasma gondii infection in susceptible BL6 mice. J Infect Dis. 2010;202:427–435.
  • Nussenblatt RB, Mittal KK, Fuhrman S, Sharma SD, Palestine AG. Lymphocyte proliferative responses of patients with ocular toxoplasmosis to parasite and retinal antigens. Am J Ophthalmol. 1989;107:632–641.
  • Kijlstra A, Hoekzema R, vd Lelij A, Doekes G, Rothova A. Humoral and cellular immune reactions against retinal antigens in clinical disease. Curr Eye Res. 1990;9 Suppl.:85–89.
  • Feron EJ, Klaren VN, Wierenga EA, Verjans GM, Kijlstra A. Characterization of Toxoplasma gondii–specific T cells recovered from vitreous fluid of patients with ocular toxoplasmosis. Invest Ophthalmol Vis Sci, 2001;42:3228–3232.
  • Desmonts G. Definitive serological diagnosis of ocular toxoplasmosis. Arch Ophthalmol. 1966;76:839–851.
  • Kijlstra A, Breebaart AC, Baarsma GS, et al. Aqueous chamber taps in toxoplasmic chorioretinitis. Doc Ophthalmol. 1986;64:53–58.
  • de Boer JH, Verhagen C, Bruinenberg M, et al. Serologic and polymerase chain reaction analysis of intraocular fluids in the diagnosis of infectious uveitis. Am J Ophthalmol. 1996;121:650–658.
  • Klaren VN, van Doornik CE, Ongkosuwito JV, Feron EJ, Kijlstra A. Differences between intraocular and serum antibody responses in patients with ocular toxoplasmosis. Am J Ophthalmol. 1998;126:698–706.
  • Ongkosuwito JV, Feron EJ, van Doornik CE, et al. Analysis of immunoregulatory cytokines in ocular fluid samples from patients with uveitis. Invest Ophthalmol Vis Sci. 1998;39:2659–2665.
  • Lahmar I, Abou–Bacar A, Abdelrahman T, et al. Cytokine profiles in toxoplasmic and viral uveitis. J Infect Dis. 2009;199:1239–1249.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.