358
Views
13
CrossRef citations to date
0
Altmetric
Original Article

Genetics of Primary Intraocular Tumors

, MD, PhD, , MD, PhD, , MD, FRCS, , MD, FACS, , MD & , MD
Pages 244-254 | Received 25 Feb 2012, Accepted 06 Jun 2012, Published online: 26 Jul 2012

REFERENCES

  • Singh AD, Turell ME, Topham AK. Uveal melanoma: trends in incidence, treatment, and survival. Ophthalmology. 2011; 118(9):1881–1885.
  • Virgili G, Gatta G, Ciccolallo L, et al. Incidence of uveal melanoma in Europe. Ophthalmology. 2007; 114(12):2309–2315.
  • Landreville S, Agapova OA, Harbour JW. Emerging insights into the molecular pathogenesis of uveal melanoma. Future Oncol. 2008; 4(5):629–636.
  • Patel M, Smyth E, Chapman PB, et al. Therapeutic implications of the emerging molecular biology of uveal melanoma. Clin Cancer Res. 2011; 17(8):2087–2100.
  • Kodjikian L, Nguyen K, Lumbroso L, et al. Familial uveal melanoma: a report on two families and a review of the literature. Acta Ophthalmol Scand. 2003; 81(4):389–395.
  • Bronkhorst IH, Maat W, Jordanova ES, et al. Effect of heterogeneous distribution of monosomy 3 on prognosis in uveal melanoma. Arch Pathol Lab Med. 2011; 135(8):1042–1047.
  • Harbour JW, Onken MD, Roberson ED, et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science. 2010; 330(6009):1410–1413.
  • Maat W, Haasnoot GW, Claas FH, et al. HLA Class I and II genotype in uveal melanoma: relation to occurrence and prognosis. Invest Ophthalmol Vis Sci. 2006; 47(1):3–6.
  • Maat W, van der Slik AR, Verhoeven DH, et al. Evidence for natural killer cell-mediated protection from metastasis formation in uveal melanoma patients. Invest Ophthalmol Vis Sci. 2009; 50(6):2888–2895.
  • Shah CP, Weis E, Lajous M, et al. Intermittent and chronic ultraviolet light exposure and uveal melanoma: a meta-analysis. Ophthalmology. 2005; 112(9):1599–1607.
  • Hearle N, Humphreys J, Damato BE, et al. Role of MC1R variants in uveal melanoma. Br J Cancer. 2003; 89(10):1961–1965.
  • Metzelaar-Blok JA, ter Huurne JA, Hurks HM, et al. Characterization of melanocortin-1 receptor gene variants in uveal melanoma patients. Invest Ophthalmol Vis Sci. 2001; 42(9):1951–1954.
  • Houlston RS, Damato BE. Genetic predisposition to ocular melanoma. Eye (Lond). 1999; 13(Pt 1):43–46.
  • Weis E, Shah CP, Lajous M, et al. The association between host susceptibility factors and uveal melanoma: a meta-analysis. Arch Ophthalmol. 2006; 124(1):54–60.
  • Kayser M, Liu F, Janssens AC, et al. Three genome-wide association studies and a linkage analysis identify HERC2 as a human iris color gene. Am J Hum Genet. 2008; 82(2):411–423.
  • Liu F, van Duijn K, Vingerling JR, et al. Eye color and the prediction of complex phenotypes from genotypes. Curr Biol. 2009; 19(5):R192–R193.
  • Branicki W, Liu F, van Duijn K, et al. Model-based prediction of human hair color using DNA variants. Hum Genet. 2011; 129(4):443–454.
  • Schmidt-Pokrzywniak A, Jockel KH, Bornfeld N, et al. Positive interaction between light iris color and ultraviolet radiation in relation to the risk of uveal melanoma: a case-control study. Ophthalmology. 2009; 116(2):340–348.
  • Cannon-Albright LA, Goldgar DE, Meyer LJ, et al. Assignment of a locus for familial melanoma, MLM, to chromosome 9p13-p22. Science. 1992; 258(5085):1148–1152.
  • Kamb A, Shattuck-Eidens D, Eeles R, et al. Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nat Genet. 1994; 8(1):23–26.
  • Cowan JM, Halaban R, Francke U. Cytogenetic analysis of melanocytes from premalignant nevi and melanomas. J Natl Cancer Inst. 1988; 80(14):1159–1164.
  • Dracopoli NC, Alhadeff B, Houghton AN, et al. Loss of heterozygosity at autosomal and X-linked loci during tumor progression in a patient with melanoma. Cancer Res. 1987; 47(15):3995–4000.
  • Petty EM, Gibson LH, Fountain JW, et al. Molecular definition of a chromosome 9p21 germ-line deletion in a woman with multiple melanomas and a plexiform neurofibroma: implications for 9p tumor-suppressor gene(s). Am J Hum Genet. 1993; 53(1):96–104.
  • Goldstein AM, Chan M, Harland M, et al. High-risk melanoma susceptibility genes and pancreatic cancer, neural system tumors, and uveal melanoma across GenoMEL. Cancer Res. 2006; 66(20):9818–9828.
  • Serrano M, Gomez-Lahoz E, DePinho RA, et al. Inhibition of ras-induced proliferation and cellular transformation by p16INK4. Science. 1995; 267(5195):249–252.
  • Soufir N, Avril MF, Chompret A, et al. Prevalence of p16 and CDK4 germline mutations in 48 melanoma-prone families in France. The French Familial Melanoma Study Group. Hum Mol Genet. 1998; 7(2):209–216.
  • Bishop DT, Demenais F, Goldstein AM, et al. Geographical variation in the penetrance of CDKN2A mutations for melanoma. J Natl Cancer Inst. 2002; 94(12):894–903.
  • Bressac-de-Paillerets B, Avril MF, Chompret A, et al. Genetic and environmental factors in cutaneous malignant melanoma. Biochimie. 2002; 84(1):67–74.
  • Kannengiesser C, Avril MF, Spatz A, et al. CDKN2A as a uveal and cutaneous melanoma susceptibility gene. Genes Chromosomes Cancer. 2003; 38(3):265–268.
  • Merbs SL, Sidransky D. Analysis of p16 (CDKN2/MTS-1/INK4A) alterations in primary sporadic uveal melanoma. Invest Ophthalmol Vis Sci. 1999; 40(3):779–783.
  • van der Velden PA, Metzelaar-Blok JA, Bergman W, et al. Promoter hypermethylation: a common cause of reduced p16(INK4a) expression in uveal melanoma. Cancer Res. 2001; 61(13):5303–5306.
  • Hearle N, Damato BE, Humphreys J, et al. Contribution of germline mutations in BRCA2, P16(INK4A), P14(ARF) and P15 to uveal melanoma. Invest Ophthalmol Vis Sci. 2003; 44(2):458–462.
  • Wang X, Egan KM, Gragoudas ES, et al. Constitutional alterations in p16 in patients with uveal melanoma. Melanoma Res. 1996; 6(6):405–410.
  • Singh AD, Croce CM, Wary KK, et al. Familial uveal melanoma: absence of germline mutations involving the cyclin-dependent kinase-4 inhibitor gene (p16). Ophthalmic Genet. 1996; 17(1):39–40.
  • Soufir N, Bressac-de Paillerets B, Desjardins L, et al. Individuals with presumably hereditary uveal melanoma do not harbour germline mutations in the coding regions of either the P16INK4A, P14ARF or cdk4 genes. Br J Cancer. 2000; 82(4):818–822.
  • Eng C, Brody LC, Wagner TM, et al. Interpreting epidemiological research: blinded comparison of methods used to estimate the prevalence of inherited mutations in BRCA1. J Med Genet. 2001; 38(12):824–833.
  • Abdel-Rahman MH, Pilarski R, Massengill JB, et al. Melanoma candidate genes CDKN2A/p16/INK4A, p14ARF, and CDK4 sequencing in patients with uveal melanoma with relative high-risk for hereditary cancer predisposition. Melanoma Res. 2011; 21(3):175–179.
  • Jensen DE, Proctor M, Marquis ST, et al. BAP1: a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression. Oncogene. 1998; 16(9):1097–1112.
  • Jensen DE, Rauscher FJ 3rd. BAP1, a candidate tumor suppressor protein that interacts with BRCA1. Ann N Y Acad Sci. 1999; 886:191–194.
  • Abdel-Rahman MH, Pilarski R, Cebulla CM, et al. Germline BAP1 mutation predisposes to uveal melanoma, lung adenocarcinoma, meningioma, and other cancers. J Med Genet. 2011; 48(12):856–859.
  • Cruz C, Teule A, Caminal JM, et al. Uveal melanoma and BRCA1/BRCA2 genes: a relationship that needs further investigation. J Clin Oncol. 2011; 29(34):e827–e829.
  • Moran A, O’Hara C, Khan S, et al. Risk of cancer other than breast or ovarian in individuals with BRCA1 and BRCA2 mutations. Fam Cancer. 2011; 11(2):235–242
  • Buecher B, Gauthier-Villars M, Desjardins L, et al. Contribution of CDKN2A/P16 ( INK4A ), P14 (ARF), CDK4 and BRCA1/2 germline mutations in individuals with suspected genetic predisposition to uveal melanoma. Fam Cancer. 2010; 9(4):663–667.
  • Honavar SG, Singh AD, Shields CL, et al. Iris melanoma in a patient with neurofibromatosis. Surv Ophthalmol. 2000; 45(3):231–236.
  • Foster WJ, Fuller CE, Perry A, et al. Status of the NF1 tumor suppressor locus in uveal melanoma. Arch Ophthalmol. 2003; 121(9):1311–1315.
  • Jager MJ, Hurks HM, Levitskaya J, et al. HLA expression in uveal melanoma: there is no rule without some exception. Hum Immunol. 2002; 63(6):444–451.
  • Pollack MS, Livingston PO. HLA and DR antigen frequencies in melanoma patients: possible relation to disease prognosis. Tissue Antigens. 1985; 26(4):262–265.
  • Mendez R, Aptsiauri N, Del Campo A, et al. HLA and melanoma: multiple alterations in HLA class I and II expression in human melanoma cell lines from ESTDAB cell bank. Cancer Immunol Immunother. 2009; 58(9):1507–1515.
  • Ignatov RK, Terent’eva LS, Shul’gina NS. [Distribution of the HLA antigen system in melanoblastoma of the uvea]. Oftalmol Zh. 1977; 32(4):289–294.
  • Martinetti M, Tafi A, De Paoli F, et al. Immunogenetic heterogeneity of uveal melanoma. Cancer Detect Prev. 1988; 12(1–6):145–148.
  • Dieckhues B, Junemann G, Kuchle HJ, et al. HLA-antigens in eye diseases (author’s transl). Klin Monbl Augenheilkd. 1979; 175(5):681–685.
  • Jager MJ, Volker-Dieben HJ, de Wolff-Rouendaal D, et al. Possible relation between HLA and ABO type and prognosis of uveal melanoma. Doc Ophthalmol. 1992; 82(1-2):43–47.
  • Metzelaar-Blok JA, Hurks HM, Naipal A, et al. Normal HLA class I, II, and MICA gene distribution in uveal melanoma. Mol Vis. 2005; 11:1166–1172.
  • Young JL, Smith MA, Roffers SD, et al. Cancer incidence and survival among children and adolescents: United States SEER Program 1975–1995. National Cancer Institute, SEER Program. NIH; 1999.
  • Bishop JO, Madson EC. Retinoblastoma. Review of the current status. Surv Ophthalmol. 1975; 19(6):342–366.
  • Dyer MA, Bremner R. The search for the retinoblastoma cell of origin. Nat Rev Cancer. 2005; 5(2):91–101.
  • Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer. 2003; 3(12):895–902.
  • MacPherson D, Sage J, Kim T, et al. Cell type-specific effects of Rb deletion in the murine retina. Genes Dev. 2004; 18(14):1681–1694.
  • Coles BL, Angenieux B, Inoue T, et al. Facile isolation and the characterization of human retinal stem cells. Proc Natl Acad Sci U S A. 2004; 101(44):15772–15777.
  • Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971; 68(4):820–823.
  • Knudson AG Jr. Retinoblastoma and cancer genetics. In: Clinical Ophthalmic Oncology. Elseviers; 2007. Philadelphia, USA.
  • Parsam VL, Ali MJ, Honavar SG, et al. Splicing aberrations caused by constitutional RB1 gene mutations in retinoblastoma. J Biosci. 2011; 36(2):281–287.
  • Fung YK, Murphree AL, T’Ang A, et al. Structural evidence for the authenticity of the human retinoblastoma gene. Science. 1987; 236(4809):1657–1661.
  • Sparkes RS, Sparkes MC, Wilson MG, et al. Regional assignment of genes for human esterase D and retinoblastoma to chromosome band 13q14. Science. 1980; 208(4447):1042–1044.
  • Harbour JW. Eye cancer: unique insights into oncogenesis: the Cogan Lecture. Invest Ophthalmol Vis Sci. 2006; 47(5):1736–1745.
  • Flemington EK, Speck SH, Kaelin WG, Jr. E2F-1-mediated transactivation is inhibited by complex formation with the retinoblastoma susceptibility gene product. Proc Natl Acad Sci U S A. 1993; 90(15):6914–6918.
  • Helin K, Harlow E, Fattaey A. Inhibition of E2F-1 transactivation by direct binding of the retinoblastoma protein. Mol Cell Biol. 1993; 13(10):6501–6508.
  • Weintraub SJ, Prater CA, Dean DC. Retinoblastoma protein switches the E2F site from positive to negative element. Nature. 1992; 358(6383):259–261.
  • Goodrich DW, Wang NP, Qian YW, et al. The retinoblastoma gene product regulates progression through the G1 phase of the cell cycle. Cell. 1991; 67(2):293–302.
  • Chen PL, Scully P, Shew JY, et al. Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation. Cell. 1989; 58(6):1193–1198.
  • Lundberg AS, Weinberg RA. Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. Mol Cell Biol. 1998; 18(2):753–761.
  • Friend SH, Bernards R, Rogelj S, et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature. 1986; 323(6089):643–646.
  • Valverde JR, Alonso J, Palacios I, et al. RB1 gene mutation up-date, a meta-analysis based on 932 reported mutations available in a searchable database. BMC Genet. 2005; 6:53.
  • Harbour JW. Overview of RB gene mutations in patients with retinoblastoma: implications for clinical genetic screening. Ophthalmology. 1998; 105(8):1442–1447.
  • Moll AC, Imhof SM, Bouter LM, et al. Second primary tumors in patients with retinoblastoma: a review of the literature. Ophthalmic Genet. 1997; 18(1):27–34.
  • T’Ang A, Varley JM, Chakraborty S, et al. Structural rearrangement of the retinoblastoma gene in human breast carcinoma. Science. 1988; 242(4876):263–266.
  • Bookstein R, Rio P, Madreperla SA, et al. Promoter deletion and loss of retinoblastoma gene expression in human prostate carcinoma. Proc Natl Acad Sci U S A. 1990; 87(19):7762–7766.
  • Sherr CJ. Cancer cell cycles. Science. 1996; 274(5293):1672–1677.
  • Harbour JW, Worley L, Ma D, et al. Transducible peptide therapy for uveal melanoma and retinoblastoma. Arch Ophthalmol. 2002; 120(10):1341–1346.
  • Houdayer C, Gauthier-Villars M, Lauge A, et al. Comprehensive screening for constitutional RB1 mutations by DHPLC and QMPSF. Hum Mutat. 2004; 23(2):193–202.
  • Richter S, Vandezande K, Chen N, et al. Sensitive and efficient detection of RB1 gene mutations enhances care for families with retinoblastoma. Am J Hum Genet. 2003; 72(2):253–269.
  • Parsam VL, Kannabiran C, Honavar S, et al. A comprehensive, sensitive and economical approach for the detection of mutations in the RB1 gene in retinoblastoma. J Genet. 2009; 88(4):517–527.
  • Ali M, Parsam V, Honavar S, et al. RB1 gene mutations in retinoblastoma and its clinical correlation. Saudi J Ophthalmol. 2010; 24:119–123.
  • Gallie BL, Gardiner J, Toi A, et al. Retinoblastoma treatment in premature infants diagnosed prenatally by ultrasound and molecular daignosis. Am J Hum Genet. 1999; Suppl. 65, A62.
  • Xu K, Rosenwaks Z, Beaverson K, et al. Preimplantation genetic diagnosis for retinoblastoma: the first reported liveborn. Am J Ophthalmol. 2004; 137(1):18–23.
  • Windle JJ, Albert DM, O’Brien JM, et al. Retinoblastoma in transgenic mice. Nature. 1990; 343(6259):665–669.
  • Zhang J, Schweers B, Dyer MA. The first knockout mouse model of retinoblastoma. Cell Cycle. 2004; 3(7):952–959.
  • Laurie NA, Donovan SL, Shih CS, et al. Inactivation of the p53 pathway in retinoblastoma. Nature. 2006; 444(7115):61–66.
  • Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004; 10(8):789–799.
  • Chan CC, Gonzales JA. Primary Intraocular Lymphoma. Singapore: World Scientific; 2007.
  • Chan CC, Rubenstein JL, Coupland SE, et al. Primary vitreoretinal lymphoma: a report from an international primary central nervous system lymphoma collaborative group symposium. Oncologist. 2011; 16(11):1589–1599.
  • Wang Y, Shen D, Wang VM, et al. Molecular biomarkers for the diagnosis of primary vitreoretinal lymphoma. Int J Mol Sci. 2011; 12(9):5684–5697.
  • Coupland SE, Foss HD, Hidayat AA, et al. Extranodal marginal zone B cell lymphomas of the uvea: an analysis of 13 cases. J Pathol. 2002; 197(3):333–340.
  • Chan CC, Buggage RR, Nussenblatt RB. Intraocular lymphoma. Curr Opin Ophthalmol. 2002; 13(6):411–418.
  • Cao X, Shen D, Callanan DG, et al. Diagnosis of systemic metastatic retinal lymphoma. Acta Ophthalmol. 2011; 89(2):e149–e154.
  • Chatterjee N, Hartge P, Cerhan JR, et al. Risk of non-Hodgkin’s lymphoma and family history of lymphatic, hematologic, and other cancers. Cancer Epidemiol Biomarkers Prev. 2004; 13(9):1415–1421.
  • Alexander DD, Mink PJ, Adami HO, et al. The non-Hodgkin lymphomas: a review of the epidemiologic literature. Int J Cancer. 2007; 120 Suppl 12:1–39.
  • Goldin LR, Bjorkholm M, Kristinsson SY, et al. Highly increased familial risks for specific lymphoma subtypes. Br J Haematol. 2009; 146(1):91–94.
  • Dias C, Isenberg DA. Susceptibility of patients with rheumatic diseases to B-cell non-Hodgkin lymphoma. Nat Rev Rheumatol. 2011; 7(6):360–368.
  • Smedby KE, Foo JN, Skibola CF, et al. GWAS of follicular lymphoma reveals allelic heterogeneity at 6p21.32 and suggests shared genetic susceptibility with diffuse large B-cell lymphoma. PLoS Genet. 2011; 7(4):e1001378.
  • Wang SS, Menashe I, Cerhan JR, et al. Variations in chromosomes 9 and 6p21.3 with risk of non-Hodgkin lymphoma. Cancer Epidemiol Biomarkers Prev. 2011; 20(1):42–49.
  • Coupland SE, Anastassiou G, Bornfeld N, et al. Primary intraocular lymphoma of T-cell type: report of a case and review of the literature. Graefes Arch Clin Exp Ophthalmol. 2005; 243(3):189–197.
  • Chan CC. Primary intraocular lymphoma: clinical features, diagnosis, and treatment. Clin Lymphoma. 2003; 4(1):30–31.
  • Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000; 403(6769):503–511.
  • Schneider C, Pasqualucci L, Dalla-Favera R. Molecular pathogenesis of diffuse large B-cell lymphoma. Semin Diagn Pathol. 2011; 28(2):167–177.
  • Hartmann EM, Ott G, Rosenwald A. Molecular biology and genetics of lymphomas. Hematol Oncol Clin North Am. 2008; 22(5):807–823, vii.
  • Rosenwald A, Wright G, Chan WC, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med. 2002; 346(25):1937–1947.
  • Iqbal J, Meyer PN, Smith L, et al. BCL2 predicts survival in germinal center B-cell-like diffuse large B-Cell lymphoma treated with CHOP-like therapy and rituximab. Clin Cancer Res. 2011:Epub 2011/2009/2022.
  • Ngan BY, Chen-Levy Z, Weiss LM, et al. Expression in non-Hodgkin’s lymphoma of the bcl-2 protein associated with the t(14;18) chromosomal translocation. N Engl J Med. 1988; 318(25):1638–1644.
  • Wallace DJ, Shen D, Reed GF, et al. Detection of the bcl-2 t(14;18) translocation and proto-oncogene expression in primary intraocular lymphoma. Invest Ophthalmol Vis Sci. 2006; 47(7):2750–2756.
  •  Lossos IS, Alizadeh AA, Eisen MB, et al. Ongoing immunoglobulin somatic mutation in germinal center B cell-like but not in activated B cell-like diffuse large cell lymphomas. Proc Natl Acad Sci U S A. 2000; 97(18):10209–10213.
  • Malumbres R, Davis J, Ruiz P, et al. Somatically mutated immunoglobulin IGHV@ genes without intraclonal heterogeneity indicate a postgerminal centre origin of primary intraocular diffuse large B-cell lymphomas. Br J Haematol. 2007; 138(6):749–755.
  • Chen W, Iida S, Louie DC, et al. Heterologous promoters fused to BCL6 by chromosomal translocations affecting band 3q27 cause its deregulated expression during B-cell differentiation. Blood. 1998; 91(2):603–607.
  • Phan RT, Dalla-Favera R. The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature. 2004; 432(7017):635–639.
  • Demchenko YN, Kuehl WM. A critical role for the NFkB pathway in multiple myeloma. Oncotarget. 2010; 1(1):59–68.
  • Ngo VN, Davis RE, Lamy L, et al. A loss-of-function RNA interference screen for molecular targets in cancer. Nature. 2006; 441(7089):106–110.
  • Izumiyama K, Nakagawa M, Yonezumi M, et al. Stability and subcellular localization of API2-MALT1 chimeric protein involved in t(11;18) (q21;q21) MALT lymphoma. Oncogene. 2003; 22(50):8085–8092.
  • Ye H, Gong L, Liu H, et al. MALT lymphoma with t(14;18)(q32;q21)/IGH-MALT1 is characterized by strong cytoplasmic MALT1 and BCL10 expression. J Pathol. 2005; 205(3):293–301.
  • Murga Penas EM, Hinz K, Roser K, et al. Translocations t(11;18)(q21;q21) and t(14;18)(q32;q21) are the main chromosomal abnormalities involving MLT/MALT1 in MALT lymphomas. Leukemia. 2003; 17(11):2225–2229.
  • Streubel B, Lamprecht A, Dierlamm J, et al. T(14;18)(q32;q21) involving IGH and MALT1 is a frequent chromosomal aberration in MALT lymphoma. Blood. 2003; 101(6):2335–2339.
  • Buggage RR, Chan CC, Nussenblatt RB. Ocular manifestations of central nervous system lymphoma. Curr Opin Oncol. 2001; 13(3):137–142.
  • Chan CC, Shen D, Hackett JJ, et al. Expression of chemokine receptors, CXCR4 and CXCR5, and chemokines, BLC and SDF-1, in the eyes of patients with primary intraocular lymphoma. Ophthalmology. 2003; 110(2):421–426.
  • Bashir R, Coakham H, Hochberg F. Expression of LFA-1/ICAM-1 in CNS lymphomas: possible mechanism for lymphoma homing into the brain. J Neurooncol. 1992; 12(2):103–110.
  • Chan CC, Whitcup SM, Solomon D, et al. Interleukin-10 in the vitreous of patients with primary intraocular lymphoma. Am J Ophthalmol. 1995; 120(5):671–673.
  • Whitcup SM, Stark-Vancs V, Wittes RE, et al. Association of interleukin 10 in the vitreous and cerebrospinal fluid and primary central nervous system lymphoma. Arch Ophthalmol. 1997; 115(9):1157–1160.
  • Turner DM, Williams DM, Sankaran D, et al. An investigation of polymorphism in the interleukin-10 gene promoter. Eur J Immunogenet. 1997; 24(1):1-8.
  • Chan CC. Molecular pathology of primary intraocular lymphoma. Trans Am Ophthalmol Soc. 2003; 101:275–292.
  • Ramkumar HL, Shen DF, Tuo J, et al. IL-10 -1082 SNP and IL-10 in primary CNS and vitreoretinal lymphomas. Graefes Arch Clin Exp Ophthalmol. 2012; May 25. [Epub ahead of print].
  • Chen Y, Zheng T, Lan Q, et al. Cytokine polymorphisms in Th1/Th2 pathway genes, body mass index, and risk of non-Hodgkin lymphoma. Blood. 2011; 117(2):585–590.
  • Wang SS, Cozen W, Cerhan JR, et al. Immune mechanisms in non-Hodgkin lymphoma: joint effects of the TNF G308A and IL10 T3575A polymorphisms with non-Hodgkin lymphoma risk factors. Cancer Res. 2007; 67(10):5042–5054.
  • Jarrett RF. Viruses and lymphoma/leukaemia. J Pathol. 2006; 208(2):176–186.
  • Bangham CR, Toulza F. Adult T cell leukemia/lymphoma: FoxP3(+) cells and the cell-mediated immune response to HTLV-1. Adv Cancer Res. 2011; 111:163–182.
  • Liu MM, Furusato E, Cao X, et al. Ocular manifestations and pathology of adult T-cell leukemia/lymphoma associated with human T-lymphotropic virus type 1. Rare Tumors. 2010; 2(4):e63.
  • Buggage RR, Smith JA, Shen D, et al. Conjunctival T-cell lymphoma caused by human T-cell lymphotrophic virus infection. Am J Ophthalmol. 2001; 131(3):381–383.
  • Coupland SE, Chan CC, Smith J. Pathophysiology of retinal lymphoma. Ocul Immunol Inflamm. 2009; 17(4):227–237.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.