162
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Mesenchymal stem cells from bone marrow show a stronger stimulating effect on megakaryocyte progenitor expansion than those from non-hematopoietic tissues

, , , , , , , , & show all
Pages 199-210 | Received 24 Nov 2009, Accepted 06 Jan 2010, Published online: 26 Feb 2010

References

  • Han ZC, Bellucci S, Caen JP. Megakaryocytopoiesis: Characterization and regulation in normal and pathologic states. Int J Hematol 1991; 54: 3–14
  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147
  • Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 1999; 181: 67–73
  • Chichester CO, Fernández M, Minguell JJ. Extracellular matrix gene expression by human bone marrow stroma and by marrow fibroblasts. Cell Adhes Commun 1993; 1: 93–99
  • Azizi SA, Stokes D, Augelli BJ, DiGirolamo C, Prockop DJ. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats-similarities to astrocyte grafts. Proc Natl Acad Sci USA 1998; 95: 3908–3913
  • Deans RJ, Moseley AB. Mesenchymal stem cells: Biology and potential clinical uses. Exp Hematol 2000; 28: 875–884
  • Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 1998; 176: 57–66
  • De Ugarte DA, Alfonso Z, Zuk PA, Elbarbary A, Zhu M, Ashjian P, Benhaim P, Hedrick MH, Fraser JK. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunol Lett 2003; 89: 267–270
  • Cheng L, Qasba P, Vanguri P, Thiede MA. Human mesenchymal stem cells support megakaryocyte and pro-platelet formation from CD34(+) hematopoietic progenitor cells. J Cell Physiol 2000; 184: 58–69
  • Haynesworth SE, Baber MA, Caplan AI. Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: Effects of dexamethasone and IL-1 alpha. J Cell Physiol 1996; 166: 585–592
  • Mbalaviele G, Jaiswal N, Meng A, Cheng L, Van Den Bos C, Thiede M. Human mesenchymal stem cells promote human osteoclast differentiation from CD34+ bone marrow hematopoietic progenitors. Endocrinology 1999; 140: 3736–3743
  • Fan CG, Tang FW, Zhang QJ, Lu SH, Liu HY, Zhao ZM, Liu B, Han ZB, Han ZC. Characterization and neural differentiation of fetal lung mesenchymal stem cells. Cell Transplant 2005; 14: 311–321
  • Lu LL, Liu YJ, Yang SG, Zhao QJ, Wang X, Gong W, Han ZB, Xu ZS, Lu YX, Liu D, Chen ZZ, Han ZC. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 2006; 91: 1017–1026
  • Feng Y, Zhang L, Xiao ZJ, Li B, Liu B, Fan CG, Yuan XF, Han ZC. An effective and simple expansion system for megakaryocyte progenitor cells using a combination of heparin with thrombopoietin and interleukin-11. Exp Hematol 2005; 33: 1537–1543
  • Mattia G, Milazzo L, Vulcano F, Pascuccio M, Macioce G, Hassan HJ, Giampaolo A. Long-term platelet production assessed in NOD/SCID mice injected with cord blood CD34+ cells, thrombopoietin-amplified in clinical grade serum-free culture. Exp Hematol 2008; 36: 244–252
  • Chen TW, Yao CL, Chu IM, Chuang TL, Hsieh TB, Hwang SM. Large generation of megakaryocytes from serum-free expanded human CD34+ cells. Biochem Biophys Res Commun 2009; 378: 112–117
  • Angelopoulou M, Novelli E, Grove JE, Rinder HM, Civin C, Cheng L, Krause DS. Cotransplantation of human mesenchymal stem cells enhances human myelopoiesis and megakaryocytopoiesis in NOD/SCID mice. Exp Hematol 2003; 31: 413–420
  • Guillot PV, Gotherstrom C, Chan J, Kurata H, Fisk NM. Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells 2007; 25: 646–654
  • Barlow S, Brooke G, Chatterjee K, Price G, Pelekanos R, Rossetti T, Doody M, Venter D, Pain S, Gilshenan K, Atkinson K. Comparison of human placenta- and bone marrow-derived multipotent mesenchymal stem cells. Stem Cells Dev 2008; 17: 1095–1107
  • in't Anker PS, Noort WA, Scherjon SA, Kleijburg-van der Keur C, Kruisselbrink AB, van Bezooijen RL, Beekhuizen W, Willemze R, Kanhai HH, Fibbe WE. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica 2003; 88: 845–852
  • Hu Y, Liao L, Wang Q, Ma L, Ma G, Jiang X, Zhao RC. Isolation and identification of mesenchymal stem cells from human fetal pancreas. J Lab Clin Med 2003; 141: 342–349
  • Li G, Zhang XA, Wang H, Wang X, Meng CL, Chan CY, Yew DT, Tsang KS, Li K, Tsai SN, et al. Comparative proteomic analysis of mesenchymal stem cells derived from human bone marrow, umbilical cord, and placenta: Implication in the migration. Proteomics 2009; 9: 20–30
  • Schöler HR, Dressler GR, Balling R, Rohdewohld H, Gruss P. Oct-4: A germline-specific transcription factor mapping to the mouse t-complex. EMBO J 1990; 9: 2185–2195
  • Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 2003; 17: 126–140
  • Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 2003; 113: 643–655
  • Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005; 122: 947–956
  • Gonzalez R, Maki CB, Pacchiarotti J, Csontos S, Pham JK, Slepko N, Patel A, Silva F. Pluripotent marker expression and differentiation of human second trimester Mesenchymal Stem Cells. Biochem Biophys Res Commun 2007; 362: 491–497
  • Jo CH, Kim OS, Park EY, Kim BJ, Lee JH, Kang SB, Lee JH, Han HS, Rhee SH, Yoon KS. Fetal mesenchymal stem cells derived from human umbilical cord sustain primitive characteristics during extensive expansion. Cell Tissue Res 2008; 334: 423–433
  • Greco SJ, Liu K, Rameshwar P. Functional similarities among genes regulated by OCT4 in human mesenchymal and embryonic stem cells. Stem Cells 2007; 25: 3143–3154
  • Xie CG, Wang JF, Xiang Y, Jia BB, Qiu LY, Wang LJ, Wang GZ, Huang GP. Marrow mesenchymal stem cells transduced with TPO/FL genes as support for ex vivo expansion of hematopoietic stem/progenitor cells. Cell Mol Life Sci 2005; 62: 2495–2507
  • Zhou XY, Tan MQ. Effect of human thrombopoietin-modified bone marrow mesenchymal stem cells mediated by recombinant adeno-associated virus on megakaryocytopoiesis. Stem Cells Dev 2007; 16: 243–251
  • Vainchenker W, Deschamps JF, Bastin JM, Guichard J, Titeux M, Breton-Gorius J, McMichael AJ. Two monoclonal antiplatelet antibodies as markers of human megakaryocyte maturation: Immunofluorescent staining and platelet peroxidase detection in megakaryocyte colonies and in in vivo cells from normal and leukemic patients. Blood 1982; 59: 514–521
  • Qiao X, Loudovaris M, Unverzagt K, Walker DE, Smith SL, Martinson J, Schilling M, Lee W, Williams SF, Van Epps DE, Cohen I, Bender JG. Immunocytochemistry and flow cytometry evaluation of human megakaryocytes in fresh samples and cultures of CD34+ cells. Cytometry 1996; 23: 250–259
  • den Dekker E, van Abel M, van der Vuurst H, van Eys GJ, Akkerman JW, Heemskerk JW. Cell-to-cell variability in the differentiation program of human megakaryocytes. Biochim Biophys Acta 2003; 1643: 85–94
  • Tomer A. Human marrow megakaryocyte differentiation: Multiparameter correlative analysis identifies von Willebrand factor as a sensitive and distinctive marker for early (2N and 4N) megakaryocytes. Blood 2004; 104: 2722–2727
  • Avecilla ST, Hattori K, Heissig B, Tejada R, Liao F, Shido K, Jin DK, Dias S, Zhang F, Hartman TE, et al. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 2004; 10: 64–71
  • Bruno E, Miller ME, Hoffman R. Interacting cytokines regulate in vitro human megakaryocytopoiesis. Blood 1989; 73: 671–677
  • Lu L, Briddell RA, Graham CD, Brandt JE, Bruno E, Hoffman R. Effect of recombinant and purified human haematopoietic growth factors on in vitro colony formation by enriched populations of human megakaryocyte progenitor cells. Br J Haematol 1988; 70: 149–156
  • Teramura M, Katahira J, Hoshino S, Motoji T, Oshimi K, Mizoguchi H. Effect of recombinant hemopoietic growth factors on human megakaryocyte colony formation in serum-free cultures. Exp Hematol 1989; 17: 1011–1016
  • Briddell RA, Hoffman R. Cytokine regulation of the human burst-forming unit-megakaryocyte. Blood 1990; 76: 516–522
  • Kaushansky K, O'Hara PJ, Berkner K, Segal GM, Hagen FS, Adamson JW. Genomic cloning, characterization, and multilineage growth-promoting activity of human granulocyte-macrophage colony-stimulating factor. Proc Natl Acad Sci USA 1986; 83: 3101–3105
  • Mazur EM, Cohen JL, Wong GG, Clark SC. Modest stimulatory effect of recombinant human GM-CSF on colony growth from peripheral blood human megakaryocyte progenitor cells. Exp Hematol 1987; 15: 1128–1133
  • Bruno E, Hoffman R. Effect of interleukin 6 on in vitro human megakaryocytopoiesis: Its interaction with other cytokines. Exp Hematol 1989; 17: 1038–1043
  • Briddell RA, Bruno E, Cooper RJ, Brandt JE, Hoffman R. Effect of c-kit ligand on in vitro human megakaryocytopoiesis. Blood 1991; 78: 2854–2859
  • Broudy VC, Lin NL, Kaushansky K. Thrombopoietin (c-mpl ligand) acts synergistically with erythropoietin, stem cell factor, and interleukin-11 to enhance murine megakaryocyte colony growth and increases megakaryocyte ploidy in vitro. Blood 1995; 85: 1719–1726
  • Hagiwara T, Kodama I, Horie K, Kato T, Miyazaki H. Proliferative properties of human umbilical cord blood megakaryocyte progenitor cells to human thrombopoietin. Exp Hematol 1998; 26: 228–235
  • Kie JH, Yang WI, Lee MK, Kwon TJ, Min YH, Kim HO, Ahn HS, Im SA, Kim HL, Park HY, et al. Decrease in apoptosis and increase in polyploidization of megakaryocytes by stem cell factor during ex vivo expansion of human cord blood CD34+ cells using thrombopoietin. Stem Cells 2002; 20: 73–79
  • Bruno S, Gunetti M, Gammaitoni L, Danè A, Cavalloni G, Sanavio F, Fagioli F, Aglietta M, Piacibello W. In vitro and in vivo megakaryocyte differentiation of fresh and ex-vivo expanded cord blood cells: Rapid and transient megakaryocyte reconstitution. Haematologica 2003; 88: 379–387
  • Kaushansky K, Broudy VC, Lin N, Jorgensen MJ, McCarty J, Fox N, Zucker-Franklin D, Lofton-Day C. Thrombopoietin, the Mp1 ligand, is essential for full megakaryocyte development. Proc Natl Acad Sci USA 1995; 92: 3234–3238
  • Lazzari L, Henschler R, Lecchi L, Rebulla P, Mertelsmann R, Sirchia G. Interleukin-6 and interleukin-11 act synergistically with thrombopoietin and stem cell factor to modulate ex vivo expansion of human CD41+ and CD61+ megakaryocytic cells. Haematologica 2000; 85: 25–30

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.