366
Views
1
CrossRef citations to date
0
Altmetric
Letter

Is there a redundancy of β3 and other platelet receptors in the brain and central nervous system?

Pages 170-172 | Received 28 Feb 2012, Accepted 19 Mar 2012, Published online: 03 Jul 2012

References

  • Pletscher A. Platelets as models for monoaminergic neurons. Essays Neurochem Neuropharmacol 1978; 3: 49–101
  • Nurden AT, Nurden P, Sanchez M, Andia I, Anitua E. Platelets and wound healing. Front Biosci 2008; 13: 3632–3646
  • Hohmann S, Schweinfurth N, Lau T, Deuschle M, Lederbogen E, Banaschewski T. Differential expression of neuronal dopamine and serotonin transporters DAT and SERT in megakaryocytes and platelets generated from human MEG-01 megakaryoblasts. Cell Tissue Res 2011; 346: 151–161
  • Rowley JW, Oler AJ, Tolley ND, Hunter BN, Low EN, Nix DA, Yost GC, Zimmerman GA, Weyrich AS. Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes. Blood 2011; 118: e101–e111
  • Hollopeter G, Jantzen HM, Vincent D, Li G, England L, Ramrakrishnan V, Yang RB, Nurden P, Nurden A, Julius D, et al. Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 2001; 409: 202–207
  • Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 2006; 9: 1512–1519
  • Cattaneo M. The platelet P2Y12 receptor for adenosine disphosphate: Congenital and drug-induced defects. Blood 2011; 117: 2102–2112
  • Coller BS, Shattil SJ. The GPIIb/IIIa (intgerin αIIbβ3) odyssey: A technology-driven saga of a receptor with twists, turns and even a bend. Blood 2008; 112: 3011–3025
  • Napolioni V, Lombardi F, Sacco R, Curatolo P, Manzi B, Alessandrelli R, Militerni R, Bravaccio C, Lenti C, Saccani M, et al. Family-based association study of ITGB3 in autism spectrum disorder and its endophenotypes. Eur J Hum Genet 2011; 19: 353–359
  • Weiss LA, Ober C, Cook Jr EH. ITGB3 shows genetic and expression interaction with SLC6A4. Hum Genet 2006; 120: 93–100
  • Ma DQ, Rabionet R, Konidari I, Jaworski J, Cuckler HN, Wright HH, Abramson RK, Gilbert JR, Cuccaro ML, Pericak-Vance MA, et al. Association and gene–gene interaction of SLC6A4 and ITGB3 in autism. Am J Med Genet B Neuropsychiatr Genet 2010; 163B: 477–483
  • Ruizzi L, Ciarafoni I, Silvestri L, Serrieraro ML, Abeni D. Association of PLA2 polymorphism of the ITGB3 gene with early fetal loss. Fertil Steril 2005; 83: 511–512
  • Careiro AM, Cook EH, Murphy DL, Blakely RD. Interactions between integrin αIIbβ3 and the serotonin transporter regulate serotonin transport and platelet aggregation in mice and humans. J Clin Invest 2008; 118: 1544–1552
  • Carter MD, Shah CR, Muller CL, Crawley JN, Carneiro AM, Veenstra-VanderWeele J. Absence of preference for social novelty and increased grooming in integrin β3 knock-out mice: Initial studies and future directions. Autism Res 2011; 4: 57–67
  • Morrell CN, Sun H, Ikeda M, Beique J-C, Swaim AM, Mason E, Martin TV, Thompson LE, Gozen O, Ampagoomian D, et al. Glutamate mediates platelet activation through the AMPA receptor. J Exp Med 2008; 205: 575–584
  • Chavis P, Westbrook B. Integrins mediate functional pre- and postsynaptic maturation at a hippocampal synapse. Nature 2001; 411: 317–321
  • Cingolani LA, Goda Y. Differential involvement of β3 integrin in pre- and postsynaptic forms of adaptation to chronic activity deprivation. Neuron Glia Biol 2008; 4: 179–187
  • Pozo K, Cingolani LA, Bassani S, Laurent F, Passafaro M, Goda Y. β3 integrin interacts directly with GluA2 AMPA receptor subunit and regulates AMPA receptor expression in hippocampal neurons. Proc Natl Acad Sci USA 2012; 109: 1323–1328
  • George JN, Caen JP, Nurden AT. Glanzmann's thrombasthenia: The spectrum of clinical disease. Blood 1990; 75: 1383–1396
  • Nurden AT, Fiore M, Nurden P, Pillois X. Glanzmann thrombasthenia: A review of ITGA2B and ITGB3 gene defects with emphasis on variants, phenotypic variability, and mouse models. Blood 2011; 118: 5996–6005
  • Coller BS, Cheresh DA, Asch E, Seligsohn U. Platelet vitronectin receptor expression differentiates Iraqi–Jewish from Arab patients with Glanzmann thrombasthenia in Israel. Blood 1991; 77: 75–83
  • Roux DT, Roullot V, Poujol C, Kortulewski T, Nurden P, Marguerie G. Thrombasthenic mice generated by replacement of the integrin αIIb gene: Demonstration that transcriptional activation of this megakaryocytic locus precedes lineage commitment. Blood 2000; 96: 1399–1408
  • Hodilvala-Dilke KM, McHugh KP, Tsakaris DA, Raybum H, Crowley D, Ullman-Culleré M, Ross FP, Coller BS, Teitelbaum S, Hynes RO. Beta3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J Clin Invest 1999; 103: 229–238
  • Patel D, Vaananen H, Jirouskova M, Hoffmann T, Bodian C, Coller BS. Dynamics of GPIIb/IIIa-mediated platelet–platelet interactions in platelet adhesion/thrombus formation on collagen in vitro as revealed by videomicroscopy. Blood 2003; 101: 929–936
  • McHugh KP, Hodivala-Dilke K, Zheng M-H, Namba N, Lam J, Novack D, Feng X, Ross FP, Hynes RO, Teitelbaum SL. Mice lacking β3 integrins are osteosclerotic because of dysfunctional osteoclasts. J Clin Invest 2000; 105: 433–440
  • Weng S, Zemany L, Standley KN, Novack DV, La Regina M, Bernal-Mizrachi C, Coleman T, Semenkovitch CF. β3 integrin deficiency promotes atherosclerosis and pulmonary inflammation in high-fat-fed hyperlipidemic mice. Proc Natl Acad Sci USA 2003; 100: 6730–6735
  • Reynolds LF, Conti FJ, Lucas M, Grose R, Robinson S, Stone M, Saunders G, Dickson S, Hynes RO, Lacy-Hulbert A, et al. Accelerated re-epithelialization in β3-integrin-deficient-mice is associated with enhanced TGF-β1 signaling. Nat Med 2005; 11: 167–174
  • Reynolds AR, Reynolds LE, Nagel TE, Lively JC, Robinson SD, Hicklin DJ, Bodary SC, Hodivala-Dilke KM. Elevated Flk1 (vascular endothelial growth factor receptor 2) signaling mediates enhanced angiogenesis in β3-integrin-deficient mice. Cancer Res 2004; 64: 8643–8650
  • Desgrosellier JS, Cheresh DA. Integrins in cancer: Biological implications and therapeutic opportunities. Nat Rev Cancer 2010; 10: 9–22

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.