354
Views
19
CrossRef citations to date
0
Altmetric
Review Article

Platelet interactions with viruses and parasites

&
Pages 317-323 | Received 17 Dec 2014, Accepted 26 Feb 2015, Published online: 27 Apr 2015

References

  • Cox D, Kerrigan SW, Watson SP. Platelets and the innate immune system: Mechanisms of bacterial-induced platelet activation. J Thrombos Haemost 2011;9:1097–1107
  • Semple J, Freedman J. Platelets and innate immunity. Cell Mol Life Sci 2010;67:499–511
  • Yeaman MR. Bacterial–platelet interactions: Virulence meets host defense. Future Microbiol 2010;5:471–506
  • Zucker M, Grant R. Aggregation and release reaction induced in human blood platelets by zymosan. J Immunol 1974;12:1219–1230
  • Herzberg M, Brintzenhofe K, Clawson C. Aggregation of human platelets and adhesion of Streptococcus sanguis. Infect Immun 1983;39:1457–1469
  • Ford I, Douglas CW, Cox D, Rees DG, Heath J, Preston FE. The role of immunoglobulin G and fibrinogen in platelet aggregation by Streptococcus sanguis. Br J Haematol 1997;97:737–746
  • O’Brien L, Kerrigan SW, Kaw G, Hogan M, Penades J, Litt D, Fitzgerald DJ, Foster TJ, Cox D. Multiple mechanisms for the activation of human platelet aggregation by Staphylococcus aureus: Roles for the clumping factors ClfA and ClfB, the serine-aspartate repeat protein SdrE and protein A. Mol Microbiol 2002;44:1033–1044
  • Byrne MF, Kerrigan SW, Corcoran PA, Atherton JC, Murray FE, Fitzgerald DJ, Cox DM. Helicobacter pylori binds von Willebrand factor and interacts with GPIb to induce platelet aggregation. Gastroenterology 2003;124:1846–1854
  • Cox D. Bacteria-platelet interactions. J Thrombos Haemost 2009;7:1865–1866
  • Fitzgerald JR, Foster TJ, Cox D. The interaction of bacterial pathogens with platelets. Nat Rev Microbiol 2006;4:445–457
  • Keane C, Tilley D, Cunningham A, Smolenski A, Kadioglu A, Cox D, Jenkinson HF, Kerrigan SW. Invasive Streptococcus pneumoniae trigger platelet activation via Toll-like receptor 2. J Thrombos Haemost 2010;8:2757–2765
  • Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, Patel KD, Chakrabarti S, McAvoy E, Sinclair GD, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nature Med 2007;13:463–469
  • Koupenova M, Vitseva O, MacKay CR, Beaulieu LM, Benjamin EJ, Mick E, Kurt-Jones EA, Ravid K, Freedman JE. Platelet-TLR7 mediates host survival and platelet count during viral infection in the absence of platelet-dependent thrombosis. Blood 2014;124:791–802
  • Garcia-Vallejo JJ, van Kooyk Y. The physiological role of DC-SIGN: A tale of mice and men. Trend Immunol 2013;34:482–486
  • Hogarth PM, Pietersz GA. Fc receptor-targeted therapies for the treatment of inflammation, cancer and beyond. Nat Rev Drug Discov 2012;11:311–331
  • Riaz AH, Tasma BE, Woodman ME, Wooten RM, Worth RG. Human platelets efficiently kill IgG-opsonized E. coli. FEMS Immunol Med Microbiol 2012;65:78–83
  • Antczak AJ, Vieth JA, Singh N, Worth RG. Internalization of IgG-coated targets Results in activation and secretion of soluble CD40 ligand and RANTES by human platelets. Clin Vaccine Immunol 2011;18:210–216
  • Fitzgerald JR, Loughman A, Keane F, Brennan M, Knobel M, Higgins J, Visai L, Speziale P, Cox D, Foster TJ. Fibronectin-binding proteins of Staphylococcus aureus mediate activation of human platelets via fibrinogen and fibronectin bridges to integrin GPIIb/IIIa and IgG binding to the FcgRIIa receptor. Mol Microbiol 2006;59:212–230
  • Huang Z-Y, Chien P, Indik ZK, Schreiber AD. Human platelet Fc[gamma]RIIA and phagocytes in immune-complex clearance. Mol Immunol 2011;48:691–696
  • Hottz ED, Oliveira MF, Nunes PC, Nogueira RM, Valls-de-Souza R, Da Poian AT, Weyrich AS, Zimmerman GA, Bozza PT, Bozza FA. Dengue induces platelet activation, mitochondrial dysfunction and cell death through mechanisms that involve DC-SIGN and caspases. J Thromb Haemost 2013;11:951–962
  • Rex S, Beaulieu L, Perlman D, Vitseva O, Blair P, McComb M, Costello C, Freedman J. Immune versus thrombotic stimulation of platelets differentially regulates signalling pathways, intracellular protein-protein interactions, and alpha-granule release. Thromb Haemost 2009;102:97–110
  • Arman M, Krauel K, Tilley DO, Weber C, Cox D, Greinacher A, Kerrigan SW, Watson SP. Amplification of bacteria-induced platelet activation is triggered by FcgammaRIIA, integrin alphaIIbbeta3, and platelet factor 4. Blood 2014;123:3166–3174
  • Zapata JC, Cox D, Salvato MS. The role of platelets in the pathogenesis of viral hemorrhagic fevers. PLoS Negl Trop Dis 2014;8:e2858
  • Cox D, Salvato M, Zapata J. The role of platelets in viral hemorrhagic fevers. J Bioterr Biodef 2013;34:129–136
  • Bosmann M, Ward PA. The inflammatory response in sepsis. Trends Immunol 2013;34:129–136
  • Leyssen P, De Clercq E, Neyts J. Perspectives for the treatment of infections with Flaviviridae. Clin Microbiol Rev 2000;13:67–82 ( table of contents)
  • Ruzek D, Yakimenko VV, Karan LS, Tkachev SE. Omsk haemorrhagic fever. Lancet 2010;376:2104–2113
  • CDC [Internet]. 2012. Kyasanur forest disease. Available from http://www.cdc.gov/vhf/kyasanur/index.html
  • WHO [Internet]. 2006. Scientific working group report on dengue. Available at http://www.who.int/mediacentre/factsheets/fs117/en/
  • World Health Organization. 2009. Dengue – Guidelines for diagnosis, treatment, prevention and control. Geneva, Switzerland: World Health Organization
  • Gibbons RV, Vaughn DW. Dengue: An escalating problem. BMJ 2002;324:1563–1566
  • Guzman MG, Kouri G. Dengue and dengue hemorrhagic fever in the Americas: Lessons and challenges. J Clin Virol 2003;27:1–13
  • Cummings DA, Schwartz IB, Billings L, Shaw LB, Burke DS. Dynamic effects of antibody-dependent enhancement on the fitness of viruses. Proc Natl Acad Sci USA 2005;102:15259–15264
  • Schmidt AC. Response to dengue fever – The good, the bad, and the ugly? N Engl J Med 2010;363:484–487
  • Goncalvez AP, Engle RE, St Claire M, Purcell RH, Lai CJ. Monoclonal antibody-mediated enhancement of dengue virus infection in vitro and in vivo and strategies for prevention. Proc Natl Acad Sci USA 2007;104:9422–9427
  • Rodenhuis-Zybert IA, van der Schaar HM, da Silva Voorham JM, van der Ende-Metselaar H, Lei HY, Wilschut J, Smit JM. Immature dengue virus: A veiled pathogen? PLoS pathogens 2010;6:e1000718
  • Moi ML, Lim C-K, Takasaki T, Kurane I. Involvement of the Fc{gamma} receptor IIA cytoplasmic domain in antibody-dependent enhancement of dengue virus infection. J Gen Virol 2010;91:103–111
  • Hottz ED, Lopes JF, Freitas C, Valls-de-Souza R, Oliveira MF, Bozza MT, Da Poian AT, Weyrich AS, Zimmerman GA, Bozza FA, Bozza PT. Platelets mediate increased endothelium permeability in dengue through NLRP3-inflammasome activation. Blood 2013;122:3405–3414
  • Noisakran S, Onlamoon N, Hsiao H-M, Clark KB, Villinger F, Ansari AA, Perng GC. Infection of bone marrow cells by dengue virus in vivo. Exp Hematol 2012;40:250–259.e4
  • Fisher-Hoch SP, Platt GS, Lloyd G, Simpson DI, Neild GH, Barrett AJ. Haematological and biochemical monitoring of Ebola infection in rhesus monkeys: Implications for patient management. Lancet 1983;2:1055–1058
  • Fisher-Hoch SP, Platt GS, Neild GH, Southee T, Baskerville A, Raymond RT, Lloyd G, Simpson DI. Pathophysiology of shock and hemorrhage in a fulminating viral infection (Ebola). J Infect Dis 1985;152:887–894
  • McElroy AK, Erickson BR, Flietstra TD, Rollin PE, Towner JS, Nichol ST, Spiropoulou CF. Von Willebrand factor is elevated in individuals infected with sudan virus and is associated with adverse clinical outcomes. Viral Immunol 2015;28:71–73
  • Ekiz F, Gurbuz Y, Basar O, Aytekin G, Ekiz O, Senturk CS, Aktas B, Yilmaz B, Altinbas A, Coban S, Sencan I. Mean platelet volume in the diagnosis and prognosis of Crimean-Congo hemorrhagic fever. Clin Appl Thromb Hemost 2013;19:441–444
  • Cui N, Bao X-L, Yang Z-D, Lu Q-B, Hu C-Y, Wang L-Y, Wang B-J, Wang H-Y, Liu K, Yuan C, et al. Clinical progression and predictors of death in patients with severe fever with thrombocytopenia syndrome in China. J Clin Virol 2014;59:12–17
  • Wang M, Wang J, Wang T, Li J, Hui L, Ha X. Thrombocytopenia as a predictor of severe acute kidney injury in patients with Hantaan virus infections. PLoS One 2013;8:e53236
  • Jin C, Liang M, Ning J, Gu W, Jiang H, Wu W, Zhang F, Li C, Zhang Q, Zhu H, et al. Pathogenesis of emerging severe fever with thrombocytopenia syndrome virus in C57/BL6 mouse model. Proc Natl Acad Sci USA 2012;109:10053–10058
  • Erduran E, Bahadir A, Palanci N, Gedik Y. The treatment of crimean-congo hemorrhagic fever with high-dose methylprednisolone, intravenous immunoglobulin, and fresh frozen plasma. J Pediatr Hematol Oncol 2013;35:e19–e24
  • van Mirre E, Teeling JL, van der Meer JWM, Bleeker WK, Hack CE. Monomeric IgG in Intravenous Ig Preparations Is a Functional Antagonist of Fc{gamma}RII and Fc{gamma}RIIIb. J Immunol 2004;173:332–339
  • Cummins D. Arenaviral haemorrhagic fevers. Blood Rev 1991;5:129–137
  • Loria GD, Romagnoli PA, Moseley NB, Rucavado A, Altman JD. Platelets support a protective immune response to LCMV by preventing splenic necrosis. Blood 2013;121:940–950
  • Gómez RM, Schattner M. Arenaviruses bite the “dust”. Blood 2013;121:868--869
  • Schattner M, Rivadeneyra L, Pozner R, Gómez R. Pathogenic mechanisms involved in the hematological alterations of arenavirus-induced hemorrhagic fevers. Viruses 2013;5:340–351
  • Negrotto S, Jaquenod de Giusti C, Rivadeneyra L, Ure AE, Mena HA, Schattner M, Gomez RM. Platelets interact with Coxsackie viruses B and have a critical role in the pathogenesis of virus-induced myocarditis. J Thromb Haemost 2015;13:271–282
  • Assinger A, Kral JB, Yaiw KC, Schrottmaier WC, Kurzejamska E, Wang Y, Mohammad A-A, Religa P, Rahbar A, Schabbauer G, et al. human cytomegalovirus–platelet interaction triggers toll-like receptor 2–dependent proinflammatory and proangiogenic responses. Arterioscler Thromb Vasc Biol 2014;34:801–809
  • Boilard E, Paré G, Rousseau M, Cloutier N, Dubuc I, Lévesque T, Borgeat P, Flamand L. Influenza virus H1N1 activates platelets through FcγRIIA signaling and thrombin generation. Blood 2014;123:2854–2863
  • Lopez-Delgado JC, Rovira A, Esteve F, Rico N, Mendiluce MR, Noguera BJ, Berrade J. Thrombocytopenia as a mortality risk factor in acute respiratory failure in H1N1 influenza. Swiss Med Wkly 2013;143:w13788
  • Jin YY, Yu XN, Qu ZY, Zhang AA, Xing YL, Jiang LX, Shang L, Wang YC. Adenovirus type 3 induces platelet activation in vitro. Mol Med Rep 2014;9:370–374
  • Dou J, Lou Y, Wu J, Lu Y, Jin Y. Thrombocytopenia in patients with hepatitis B virus-related chronic hepatitis: Evaluation of the immature platelet fraction. Platelets 2014;25:399–404
  • Nguyen T, Kyle UG, Jaimon N, Tcharmtchi MH, Coss-Bu JA, Lam F, Teruya J, Loftis L. Coinfection with Staphylococcus aureus increases risk of severe coagulopathy in critically ill children with influenza A (H1N1) virus infection. Crit Care Med 2012;40:3246–3250
  • Craig JN, Connie WHY, Franz zJ, McDonald B, Masmudur RM, Peter FA, McFadden G, Kubes P. Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps. Cell Host Microbe 2013;13:169–180
  • Kondo R, Yano H, Nakashima O, Tanikawa K, Nomura Y, Kage M. Accumulation of platelets in the liver may be an important contributory factor to thrombocytopenia and liver fibrosis in chronic hepatitis C. J Gastroenterol 2013;48:526–534
  • Beck Z, Jagodzinski LL, Eller MA, Thelian D, Matyas GR, Kunz AN, Alving CR. Platelets and erythrocyte-bound platelets bind infectious hiv-1 in plasma of chronically infected patients. PLoS One 2013;8:e81002
  • Chaipan C, Soilleux EJ, Simpson P, Hofmann H, Gramberg T, Marzi A, Geier M, Stewart EA, Eisemann J, Steinkasserer A, et al. DC-SIGN and CLEC-2 mediate human immunodeficiency virus type 1 capture by platelets. J Virol 2006;80:8951–8960
  • Solomon Tsegaye T, Gnirß K, Rahe-Meyer N, Kiene M, Kramer-Kuhl A, Behrens G, Munch J, Pohlmann S. Platelet activation suppresses HIV-1 infection of T cells. Retrovirology 2013;10:48
  • Damien P, Cognasse F, Lucht F, Suy F, Pozzetto B, Garraud O, Hamzeh-Cognasse H. Highly active antiretroviral therapy alters inflammation linked to platelet cytokines in HIV-1-infected patients. J Infect Dis 2013;208:868–870
  • Singh MV, Davidson DC, Jackson JW, Singh VB, Silva J, Ramirez SH, Maggirwar SB. Characterization of platelet–monocyte complexes in HIV-1-infected individuals: Possible ROLE In HIV-associated neuroinflammation. J Immunol 2014;192:4674–4684
  • Davidson D, Jackson J, Maggirwar S. Targeting platelet-derived soluble CD40 ligand: A new treatment strategy for HIV-associated neuroinflammation? J Neuroinflammation 2013;10:144
  • Bethel-Brown C, Yao H, Hu G, Buch S. Platelet-derived growth factor (PDGF)-BB-mediated induction of monocyte chemoattractant protein 1 in human astrocytes: Implications for HIV-associated neuroinflammation. J Neuroinflammation 2012;9:262
  • O’Brien M, Montenont E, Hu L, Nardi MA, Valdes V, Merolla M, Gettenberg G, Cavanagh K, Aberg JA, Bhardwaj N, Berger JS. Aspirin attenuates platelet activation and immune activation in HIV-1-infected subjects on antiretroviral therapy: A pilot study. J Acquir Immune Defic Syndr 2013;63:280–288
  • Zetterberg E, Neuhaus J, Baker JV, Somboonwit C, Llibre JM, Palfreeman A, Chini M, Lundgren JD; Group ISS. Platelet count kinetics following interruption of antiretroviral treatment. AIDS 2013;27:59–68
  • Gresele P, Falcinelli E, Sebastiano M, Baldelli F. Endothelial and platelet function alterations in HIV-infected patients. Thromb Res 2012;129:301–308
  • Ronsholt FF, Ullum H, Katzenstein TL, Gerstoft J, Ostrowski SR. Persistent inflammation and endothelial activation in HIV-1 infected patients after 12 years of antiretroviral therapy. PLoS One 2013;8:e65182
  • Wang J, Zhang W, Nardi MA, Li Z. HIV-1 Tat-induced platelet activation and release of CD154 contribute to HIV-1-associated autoimmune thrombocytopenia. J Thrombos Haemost 2011;9:562–573
  • Kerrigan SW, Clarke N, Loughman A, Meade G, Foster TJ, Cox D. Molecular basis for Staphylococcus aureus-mediated platelet aggregate formation under arterial shear in vitro. Arterioscler Thromb Vasc Biol 2008;28:335–340
  • Cox D, McConkey S. The role of platelets in the pathogenesis of cerebral malaria. Cell Mol Life Sci 2010;67:557–568
  • Idro R, Jenkins NE, Newton CR. Pathogenesis, clinical features, and neurological outcome of cerebral malaria. Lancet Neurol 2005;4:827–840
  • Angchaisuksiri P. Coagulopathy in malaria. Thromb Res 2014;133:5–9
  • Muley A, Lakhani J, Bhirud S, Patel A. Thrombocytopenia in Plasmodium vivax malaria: How significant? J Trop Med 2014;2014:567469
  • Rogier C, Gerardin P, Imbert P. Thrombocytopenia is predictive of lethality in severe childhood falciparum malaria. Arch Dis Child 2004;89:795-a-6
  • Pain A, Ferguson DJ, Kai O, Urban BC, Lowe B, Marsh K, Roberts DJ. Platelet-mediated clumping of Plasmodium falciparum-infected erythrocytes is a common adhesive phenotype and is associated with severe malaria. Proc Natl Acad Sci USA 2001;98:1805–1810
  • Gerardin P, Rogier C, Ka AS, Jouvencel P, Brousse V, Imbert P. Prognostic value of thrombocytopenia in African children with falciparum malaria. Am J Trop Med Hyg 2002;66:686–691
  • Patel U, Gandhi G, Friedman S, Niranjan S. Thrombocytopenia in malaria. J Natl Med Assoc 2004;96:1212–1214
  • Erhart LM, Yingyuen K, Chuanak N, Buathong N, Laoboonchai A, Miller RS, Meshnick SR, Gasser RA, Jr Wongsrichanalai C. Hematologic and clinical indices of malaria in a semi-immune population of western Thailand. Am J Trop Med Hyg 2004;70:8–14
  • Rock G, Clark W, Sternbach M, Kolajova M, McLaine P. Haemolytic uraemic syndrome is an immune-mediated disease: Role of anti-CD36 antibodies. Br J Haematol 2005;131:247–252
  • Ockenhouse CF, Magowan C, Chulay JD. Activation of monocytes and platelets by monoclonal antibodies or malaria-infected erythrocytes binding to the CD36 surface receptor in vitro. J Clin Invest 1989;84:468–475
  • Grau GE, Mackenzie CD, Carr RA, Redard M, Pizzolato G, Allasia C, Cataldo C, Taylor TE, Molyneux ME. Platelet accumulation in brain microvessels in fatal pediatric cerebral malaria. J Infect Dis 2003;187:461–466
  • Dorovini-Zis K, Schmidt K, Huynh H, Fu W, Whitten RO, Milner D, Kamiza S, Molyneux M, Taylor TE. The neuropathology of fatal cerebral malaria in Malawian children. Am J Pathol 2011;178:2146–2158
  • Tandon NN, Lipsky RH, Burgess WH, Jamieson GA. Isolation and characterization of platelet glycoprotein IV (CD36). J Biol Chem 1989;264:7570–7575
  • Barnwell JW, Asch AS, Nachman RL, Yamaya M, Aikawa M, Ingravallo P. A human 88-kD membrane glycoprotein (CD36) functions in vitro as a receptor for a cytoadherence ligand on Plasmodium falciparum-infected erythrocytes. J Clin Invest 1989;84:765–772
  • Ockenhouse CF, Tandon NN, Magowan C, Jamieson GA, Chulay JD. Identification of a platelet membrane glycoprotein as a falciparum malaria sequestration receptor. Science 1989;243:1469–1471
  • Biswas AK, Hafiz A, Banerjee B, Kim KS, Datta K, Chitnis CE. Plasmodium falciparum uses gC1qR/HABP1/p32 as a receptor to bind to vascular endothelium and for platelet-mediated clumping. PLoS pathogens 2007;3:1271–1280
  • Baruch DI, Gormley JA, Ma C, Howard RJ, Pasloske BL. Plasmodium falciparum erythrocyte membrane protein 1 is a parasitized erythrocyte receptor for adherence to CD36, thrombospondin, and intercellular adhesion molecule 1. PNAS 1996;93:3497–502
  • Hollestelle MJ, Donkor C, Mantey EA, Chakravorty SJ, Craig A, Akoto AO, O’Donnell J, van Mourik JA, Bunn J. von Willebrand factor propeptide in malaria: Evidence of acute endothelial cell activation. Brit J Haematol 2006;133:562–569
  • Grau GE, Tacchini-Cottier F, Vesin C, Milon G, Lou JN, Piguet PF, Juillard P. TNF-induced microvascular pathology: Active role for platelets and importance of the LFA-1/ICAM-1 interaction. Eur Cytokine Netw 1993;4:415–419
  • van der Heyde HC, Gramaglia I, Sun G, Woods C. Platelet depletion by anti-CD41 (αIIb) mAb injection early but not late in the course of disease protects against Plasmodium berghei pathogenesis by altering the levels of pathogenic cytokines. Blood 2005;105:1956–1963
  • Bate CA, Taverne J, Kwiatkowski D, Playfair JH. Phospholipids coupled to a carrier induce IgG antibody that blocks tumour necrosis factor induction by toxic malaria antigens. Immunology 1993;79:138–145
  • Piguet PF, Kan CD, Vesin C. Role of the tumor necrosis factor receptor 2 (TNFR2) in cerebral malaria in mice. Lab Invest 2002;82:1155–1166
  • Lou J, Donati YR, Juillard P, Giroud C, Vesin C, Mili N, Grau GE. Platelets play an important role in TNF-induced microvascular endothelial cell pathology. Am J Pathol 1997;151:1397–1405
  • Wassmer SC, Lepolard C, Traore B, Pouvelle B, Gysin J, Grau GE. Platelets reorient Plasmodium falciparum-infected erythrocyte cytoadhesion to activated endothelial cells. J Infect Dis 2004;189:180–189
  • Grau G, Tacchini-Cottier F, Vesin C, Milon G, Lou J, Piguet P, Juillard P. TNF-induced microvascular pathology: Active role for platelets and importance of the LFA-1/ICAM-1 interaction. Eur Cytokine Netw 1993;4:415–419
  • Wassmer SC, de Souza JB, Frere C, Candal FJ, Juhan-Vague I, Grau GE. TGF-beta1 released from activated platelets can induce TNF-stimulated human brain endothelium apoptosis: A new mechanism for microvascular lesion during cerebral malaria. J Immunol 2006;176:1180–1114
  • Bridges DJ, Bunn J, van Mourik JA, Grau G, Preston RJS, Molyneux M, Combes V, O’Donnell JS, de Laat B, Craig A. Rapid activation of endothelial cells enables Plasmodium falciparum adhesion to platelet-decorated von Willebrand factor strings. Blood 2010;115:1472–1474
  • Sun G, Chang WL, Li J, Berney SM, Kimpel D, van der Heyde HC. Inhibition of platelet adherence to brain microvasculature protects against severe Plasmodium berghei malaria. Infect Immun 2003;71:6553–6561
  • Wassmer SC, Combes V, Candal FJ, Juhan-Vague I, Grau GE. Platelets potentiate brain endothelial alterations induced by Plasmodium falciparum. Infect Immun 2006;74:645–653
  • Polack B, Delolme F, Peyron F. Protective role of platelets in chronic (Balb/C) and acute (CBA/J) Plasmodium berghei murine malaria. Haemostasis 1997;27:278–285
  • Wassmer SC, Taylor T, MacLennan CA, Kanjala M, Mukaka M, Molyneux ME, Grau GE. Platelet-induced clumping of Plasmodium falciparum-infected erythrocytes from malawian patients with cerebral malaria: Possible modulation in vivo by thrombocytopenia. J Infect Dis 2008;197:72–78
  • Aggrey AA, Srivastava K, Ture S, Field DJ, Morrell CN. Platelet induction of the acute-phase response is protective in murine experimental cerebral malaria. J Immunol 2013;190:4685–4691
  • McMorran BJ, Marshall VM, de Graaf C, Drysdale KE, Shabbar M, Smyth GK, Corbin JE, Alexander WS, Foote SJ. Platelets kill intraerythrocytic malarial parasites and mediate survival to infection. Science 2009;323:797–800
  • Srivastava K, Cockburn IA, Swaim A, Thompson LE, Tripathi A, Fletcher CA, Shirk EM, Sun H, Kowalska MA, Fox-Talbot K, et al. Platelet factor 4 mediates inflammation in experimental cerebral malaria. Cell Host Microbe 2008;4:179–187
  • McMorran BJ, Wieczorski L, Drysdale KE, Chan JA, Huang HM, Smith C, Mitiku C, Beeson JG, Burgio G, Foote SJ. Platelet factor 4 and Duffy antigen required for platelet killing of Plasmodium falciparum. Science 2012;338:1348–1351
  • Correia MC, Domingues AL, Lacerda HR, Santos EM, Machado CG, Hora V, Neves MA, Brito A, Coelho MR, Silva JL. Platelet function and the von Willebrand factor antigen in the hepatosplenic form of schistosomiasis mansoni. Trans R Soc Trop Med Hyg 2009;103:1053–1058
  • Stanley RG, Ngaiza JR, Wambayi E, Lewis J, Doenhoff MJ. Platelets as an innate defence mechanism against Schistosoma mansoni infections in mice. Parasite Immunol 2003;25:467–473
  • Stanley R, Ngaiza J, Atieno E, Jell G, Francklow K, Jackson C, Parry H, Doenhoff M. Immune-dependent thrombocytopaenia in mice infected with Schistosoma mansoni. Parasitology 2003;126:225–229
  • Nunes MC, Dones W, Morillo CA, Encina JJ, Ribeiro AL; Council on Chagas Disease of the Interamerican Society of C. Chagas disease: An overview of clinical and epidemiological aspects. J Am Coll Cardiol 2013;62:767–776
  • da Silva RV, Malvezi AD, Augusto L da S, Kian D, Tatakihara VL, Yamauchi LM, Yamada-Ogatta SF, Rizzo LV, Schenkman S, Pinge-Filho P. Oral exposure to Phytomonas serpens attenuates thrombocytopenia and leukopenia during acute infection with Trypanosoma cruzi. PLoS One 2013;8:e68299
  • Nisimura LM, Estato V, de Souza EM, Reis PA, Lessa MA, Castro-Faria-Neto HC, Pereira MC, Tibirica E, Garzoni LR. Acute Chagas disease induces cerebral microvasculopathy in mice. PLoS Negl Trop Dis 2014;8:e2998
  • Cox D, Motoyama Y, Seki J, Aoki T, Dohi M, Yoshida K. Pentamidine: A non-peptide GPIIb/IIIa antagonist –In vitro studies on platelets from humans and other species. Thromb Haemost 1992;68:731–6
  • Cox D, Uga S, Motoyama Y, Yoshida K. Characterization of the fibronectin binding properties of Trypanasoma cruzi epimastigotes. J Protozool Res 1992;2:149–157
  • Tribulatti MV, Mucci J, Van Rooijen N, Leguizamon MS, Campetella O. The trans-sialidase from Trypanosoma cruzi induces thrombocytopenia during acute Chagas’ disease by reducing the platelet sialic acid contents. Infect Immun 2005;73:201–207
  • Speth C, Rambach G, Lass-Flörl C. Platelet immunology in fungal infections. Thrombosis and Haemostasis 2014;112:632--9
  • Costa-de-Oliveira S, Pina-Vaz C, Mendonca D, Goncalves Rodrigues A. A first Portuguese epidemiological survey of fungaemia in a university hospital. Eur J Clin Microbiol Infect Dis 2008;27:365–374
  • Ayesh Haj Yousef MH, Alawneh KM. Candida albicans-induced chronic thrombocytopenic purpura. Acta Haematol 2011;126:202–204
  • Bruserud O. Bidirectional crosstalk between platelets and monocytes initiated by Toll-like receptor: an important step in the early defense against fungal infections? Platelets 2013;24:85–97
  • Speth C, Hagleitner M, Ott HW, Wurzner R, Lass-Florl C, Rambach G. Aspergillus fumigatus activates thrombocytes by secretion of soluble compounds. J Infect Dis 2013;207:823–833
  • Bertling A, Niemann S, Uekotter A, Fegeler W, Lass-Florl C, von Eiff C, Kehrel BE. Candida albicans and its metabolite gliotoxin inhibit platelet function via interaction with thiols. Thromb Haemost 2010;104:270–228
  • Rodland EK, Ueland T, Pedersen TM, Halvorsen B, Muller F, Aukrust P, Froland SS. Activation of platelets by Aspergillus fumigatus and potential role of platelets in the immunopathogenesis of Aspergillosis. Infect Immun 2010;78:1269–1275
  • Zucker M, Grant R, Alper C, Goodkofsky I, Lepow I. Requirement for complement components and fibrinogen in the zymosan-induced release reaction of human blood platelets. J Immunol 1974;13:1744–1751
  • Martin S, Breckenridge R, Rosenfeld S, Leddy J. Responses of human platelets to immunologic stimuli: Independent roles for complement and IgG in zymosan activation. J Immunol 1978;120:9–14
  • Miajlovic H, Loughman A, Brennan M, Cox D, Foster TJ. Both complement- and fibrinogen-dependent mechanisms contribute to platelet aggregation mediated by Staphylococcus aureus clumping factor B. Infect Immun 2007;75:3335–3343
  • Loughman A, Fitzgerald JR, Brennan MP, Higgins J, Downer R, Cox D, Foster TJ. Roles for fibrinogen, immunoglobulin and complement in platelet activation promoted by Staphylococcus aureus clumping factor A. Mol Microbiol 2005;57:804–818

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.