715
Views
23
CrossRef citations to date
0
Altmetric
Review Article

Platelet-derived sphingosine-1-phosphate and inflammation: from basic mechanisms to clinical implications

, , , , , & show all
Pages 393-401 | Received 20 Nov 2015, Accepted 05 Jan 2016, Published online: 07 Mar 2016

References

  • Machlus KR, Italiano JE Jr. The incredible journey: From megakaryocyte development to platelet formation. J Cell Biol 2013;201:785–796.
  • Golebiewska EM, Poole AW. Platelet secretion: From haemostasis to wound healing and beyond. Blood Rev 2015;29:153–162.
  • McFadyen JD, Jackson SP. Differentiating haemostasis from thrombosis for therapeutic benefit. Thromb Haemos 2013;110:859–867.
  • Andrews RK, Berndt MC. Platelet adhesion: A game of catch and release. J Clin Invest 2008;118:3009–3011.
  • Jackson SP, Nesbitt WS, Westein E. Dynamics of platelet thrombus formation. Thromb Haemost 2009;1:17–20.
  • Li Z, Delaney MK, O’Brien KA, Du X. Signaling during platelet adhesion and activation. Arterioscler Thromb Vasc Biol 2010;30:2341–2349.
  • McFadyen JD, Kaplan ZS. Platelets are not just for clots. Transfus Med Rev 2015;29:110–119.
  • Herter JM, Rossaint J, Zarbock A. Platelets in inflammation and immunity. J Thromb Haemost 2014;12:1764–1775.
  • Gros A, Ollivier V, Ho-Tin-Noé B. Platelets in inflammation: Regulation of leukocyte activities and vascular repair. Front Immunol 2015;5:678.
  • Jenne CN, Kubes P. Platelets in inflammation and infection. Platelets 2015;26:286–292.
  • Li N. Platelet-lymphocyte cross-talk. J Leukoc Biol 2008;83:1069–1078.
  • Stephen J, Emerson B, Fox KA, Dransfield I. The uncoupling of monocyte-platelet interactions from the induction of proinflammatory signaling in monocytes. J Immunol 2013;191:5677–5683.
  • Scull CM, Hays WD, Fischer TH. Macrophage pro-inflammatory cytokine secretion is enhanced following interaction with autologous platelets. J Inflamm (Lond) 2010;7:53.
  • Strub GM, Maceyka M, Hait NC, Milstien S, Spiegel S. Extracellular and intracellular actions of sphingosine-1-phosphate. Adv Exp Med Biol 2010;688:141–155.
  • Pyne S, Lee SC, Long J, Pyne NJ. Role of sphingosine kinases and lipid phosphate phosphatases in regulating spatial sphingosine 1-phosphate signalling in health and disease. Cell Signal 2009;21:14–21.
  • Liu X, Zhang QH, Yi GH. Regulation of metabolism and transport of sphingosine-1-phosphate in mammalian cells. Mol Cell Biochem 2012;363:21–33.
  • Tettamanti G, Bassi R, Viani P, Riboni L. Salvage pathways in glycosphingolipid metabolism. Biochimie 2003;85:423–437.
  • Hannun YA, Obeid LM. Principles of bioactive lipid signalling: Lessons from sphingolipids. Nature Rev Mol Cell Biol 2008;9:139–150.
  • Takabe K, Paugh SW, Milstien S, Spiegel S. “Inside-out” signaling of sphingosine-1-phosphate: Therapeutic targets. Pharmacol Rev 2008;60:181–195.
  • Maceyka M, Harikumar KB, Milstien S, Spiegel S. Sphingosine-1-phosphate signalling and its role in disease. Trends Cell Biol 2012;22:50–60.
  • Riboni L, Giussani P, Viani P. Sphingolipid transport. Adv Exp Med Biol 2010;688:24–45.
  • Nishi T, Kobayashi N, Hisano Y, Kawahara Atsuo, Yamaguchi A. Molecular and physiological functions of sphingosine 1-phosphate transporters. Biochim Biophys Acta 2014;1841:759–765.
  • Kim RH, Takabe K, Milstien S, Spiegel S. Export and functions of sphingosine-1-phosphate. Biochim Biophys Acta 2009;1791:692–696.
  • Blaho VA, Hla T. An update on the biology of sphingosine 1-phosphate receptors. J Lipid Res 2014;55:1596–1608.
  • Proia RL, Hla T. Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy. J Clin Invest 2015;125:1379–1387.
  • Serra M, Saba JD. Sphingosine 1-phosphate lyase, a key regulator of sphingosine 1-phosphate signaling and function. Adv Enzyme Regul 2010;50:349–362.
  • Mandala SM. Sphingosine-1-phosphate phosphatases. Prostaglandins Other Lipid Mediat 2001;64:143–156.
  • Tang X, Benesch MGK, Brindley DN. Lipid phosphate phosphatases and their roles in mammalian physiology and pathology. J Lipid Res 2015;56:2048–2060.
  • Książek M, Chacińska M, Chabowski A, Baranowski M. Sources, metabolism, and regulation of circulating sphingosine-1-phosphate. J Lipid Res 2015;56:1271–1281.
  • Christoffersen C, Obinata H, Kumaraswamy SB, Galvani S, Ahnström J, Sevvana M, Egerer-Sieber C, Muller YA, Hla T, Nielsen LB, et al. Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc Natl Acad Sci USA 2011;108:9613–9618.
  • Murata N, Sato K, Kon J, Tomura H, Yanagita M, Kuwabara A, Ui M, Okajima F. Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions. Biochem J 2000;352:809–815.
  • Okajima F. Plasma lipoproteins behave as carriers of extracellular sphingosine 1-phosphate: is this an atherogenic mediator or an anti-atherogenic mediator? Biochim Biophys Acta 2002;1582:132–137.
  • Yatomi Y, Igarashi Y, Yang L, Hisano N, Qi R, Asazuma N, Satoh K, Ozaki Y, Kume S. Sphingosine 1-phosphate, a bioactive sphingolipid abundantly stored in platelets, is a normal constituent of human plasma and serum. J Biochem 1997;121:969–973.
  • Hänel P, Andreani P, Graler MH. Erythrocytes store and release sphingosine 1-phosphate in blood. FASEB J 2007;21:1202–1209.
  • Bode C, Sensken SC, Peest U, Beutel G, Thol F, Levkau B, Li Z, Bittman R, Huang T, Tolle M, et al. Erythrocytes serve as a reservoir for cellular and extracellular sphingosine 1-phosphate. J Cell Biochem 2010;109:1232–1243.
  • Venkataraman K, Lee YM, Michaud J, Thangada S, Ai Y, Bonkovsky HL, Parikh NS, Habrukowich C, Hla T. Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ Res 2008;102:669–676.
  • Yang L, Yatomi Y, Miura Y, Satoh K, Ozaki Y. Metabolism and functional effects of sphingolipids in blood cells. Br J Haematol 1999;107:282–293.
  • Ohkawa R, Nakamura K, Okubo S, Hosogaya S, Ozaki Y, Tozuka M, Osima N, Yokota H, Ikeda H, Yatomi Y. Plasma sphingosine-1-phosphate measurement in healthy subjects: Close correlation with red blood cell parameters. Ann Clin Biochem 2008;45:356–363.
  • Fukuhara S, Simmons S, Kawamura S, Inoue A, Orba Y, Tokudome T, Sunden Y, Arai Y, Moriwaki K, Ishida J, et al. The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice. J Clin Invest 2012;122:1416–1426.
  • Hisano Y, Kobayashi N, Yamaguchi A, Nishi T. Mouse SPNS2 functions as a sphingosine-1-phosphate transporter in vascular endothelial cells. PLoS One 2012;7:e38941.
  • Zhang L, Urtz N, Gaertner F, Legate KR, Petzold T, Lorenz M, Mazharian A, Watson SP, Massberg S. Sphingosine kinase 2 (Sphk2) regulates platelet biogenesis by providing intracellular sphingosine 1-phosphate (S1P). Blood 2013;122:791–802.
  • Zhang L, Orban M, Lorenz M, Barocke V, Braun D, Urtz N, Schulz C, von Brühl ML, Tirniceriu A, Gaertner F, et al. A novel role of sphingosine 1-phosphate receptor S1pr1 in mouse thrombopoiesis. J Exp Med 2012;209:2165–2181.
  • Hla T, Galvani S, Rafii S, Nachman R. S1P and the birth of platelets. J Exp Med 2012;209:2137–2140.
  • Golfier S, Kondo S, Schulze T, Takeuchi T, Vassileva G, Achtman AH, Graler MH, Abbondanzo SJ, Wiekowski M, Kremmer E, et al. Shaping of terminal megakaryocyte differentiation and proplatelet development by sphingosine-1-phosphate receptor S1P4. FASEB J 2010;24:4701–4710.
  • Rauch BH. Sphingosine 1-phosphate as a link between blood coagulation and inflammation. Cell Physiol Biochem 2014;34:185–196.
  • Obinata H, Hla T. Sphingosine 1-phosphate in coagulation and inflammation. Semin Immunopathol 2012;34:73–91.
  • Yatomi Y, Ruan F, Hakomori S, Igarashi Y. Sphingosine-1-phosphate: A platelet-activating sphingolipid released from agonist-stimulated human platelets. Blood 1995;86:193–202.
  • Randriamboavonjy V, Badenhoop K, Schmidt H, Geisslinger G, Fisslthaler B, Fleming I. The S1P(2) receptor expressed in human platelets is linked to the RhoA-Rho kinase pathway and is down regulated in type 2 diabetes. Basic Res Cardiol 2009;104:333–340.
  • Xiao H, Siddiqui RA, Al-Hassani MH, Sliva D, Kovacs RJ. Phospholipids released from activated platelets improve platelet aggregation and endothelial cell migration. Platelets 2001;12:163–170.
  • Urtz N, Gaertner F, von Bruehl ML, Chandraratne S, Rahimi F, Zhang L, Orban M, Barocke V, Beil J, Schubert I, et al. Sphingosine 1-phosphate produced by sphingosine kinase 2 intrinsically controls platelet aggregation in vitro and in vivo. Circ Res 2015;117:376–387.
  • Nugent D, Xu Y. Sphingosine-1-phosphate: Characterization of its inhibition of platelet aggregation. Platelets 2000;11:226–232.
  • Stoffel W, Heimann G, Hellenbroich B. Sphingosine kinase in blood platelets. Hoppe Seylers Z Physiol Chem 1973;354:562–566.
  • Yatomi Y, Yamamura S, Ruan F, Igarashi Y. Sphingosine 1-phosphate induces platelet activation through an extracellular action and shares a platelet surface receptor with lysophosphatidic acid. J Biol Chem 1997;272:5291–5297.
  • Yatomi Y, Ozaki Y, Ohmori T, Igarashi Y. Sphingosine 1-phosphate: Synthesis and release. Prostaglandins Other Lipid Mediat 2001;64:107–122.
  • Tani M, Sano T, Ito M, Igarashi Y. Mechanisms of sphingosine and sphingosine 1-phosphate generation in human platelets. J Lipid Res 2005;46:2458–2467.
  • Marcus AJ, Ullman HL, Safier LB. Lipid composition of subcellular particles of human blood platelets. J Lipid Res 1969;10:108–114.
  • Tabas I. Secretory sphingomyelinase. Chem Phys Lipids 1999;102:123–130.
  • Schissel SL, Schuchman EH, Williams KJ, Tabas I. Zn2+-stimulated sphingomyelinase is secreted by many cell types and is a product of the acid sphingomyelinase gene. J Biol Chem 1996;271:18431–18436.
  • Marathe S, Schissel SL, Yellin MJ, Beatini N, Mintzer R, Williams KJ, Tabas I. Human vascular endothelial cells are a rich and regulatable source of secretory sphingomyelinase. Implications for early atherogenesis and ceramide-mediated cell signaling. J Biol Chem 1998;273:4081–4088.
  • Romiti E, Vasta V, Meacci E, Farnararo M, Linke T, Ferlinz K, Sandhoff K, Bruni P. Characterization of sphingomyelinase activity released by thrombin-stimulated platelets. Mol Cell Biochem 2000;205:75–81.
  • Romiti E, Meacci E, Tani M, Nuti F, Farnararo M, Ito M, Bruni P. Neutral/alkaline and acid ceramidase activities are actively released by murine endothelial cells. Biochem Biophys Res Commun 2000;275:746–751.
  • Engelmann B, Kögl C, Kulschar R, Schaipp B. Transfer of phosphatidylcholine, phosphatidylethanolamine and sphingomyelin from low- and high-density lipoprotein to human platelets Biochem J 1996;315:781–789.
  • Simon CG Jr, Chatterjee S, Gear AR. Sphingomyelinase activity in human platelets. Thromb Res 1998;90:155–161.
  • Fukuda Y, Kihara A, Igarashi Y. Distribution of sphingosine kinase activity in mouse tissues: contribution of SPHK1. Biochem Biophys Res Commun 2003;309:155–160.
  • Banno Y, Kato M, Hara A, Nozawa Y. Evidence for the presence of multiple forms of Sph kinase in human platelets. Biochem J 1998;335:301–304.
  • Kobayashi N, Nishi T, Hirata T, Kihara A, Sano T, Igarashi Y, Yamaguchi A. Sphingosine 1-phosphate is released from the cytosol of rat platelets in a carrier-mediated manner. J Lipid Res 2006;47:614–621.
  • Jonnalagadda D, Sunkara M, Morris AJ, Whiteheart SW. Granule-mediated release of sphingosine-1-phosphate by activated platelets. Biochim Biophys Acta 2014;1841:1581–1589.
  • Smyth SS, Sciorra VA, Sigal YJ, Pamuklar Z, Wang Z, Xu Y, Prestwich GD, Morris AJ. Lipid phosphate phosphatases regulate lysophosphatidic acid production and signalling in platelets: studies using chemical inhibitors of lipid phosphate phosphatase activity. J Biol Chem 2003;278:43214–43223.
  • Ono Y, Kurano M, Ohkawa R, Yokota H, Igarashi K, Aoki J, Tozuka M, Yatomi Y. Sphingosine 1-phosphate release from platelets during clot formation: Close correlation between platelet count and serum sphingosine 1-phosphate concentration. Lipids Health Dis 2013;12:20–26.
  • Ulrych T, Böhm A, Polzin A, Daum G, Nüsing RM, Geisslinger G, Hohlfeld T, Schrör K, Rauch BH. Release of sphingosine-1-phosphate from human platelets is dependent on thromboxane formation. J Thromb Haemost 2011;9:790–798.
  • Sano T, Baker D, Virag T, Wada A, Yatomi Y, Kobayashi T, Igarashi Y, Tigyi G. Multiple mechanisms linked to platelet activation result in lysophosphatidic acid and sphingosine 1-phosphate generation in blood. J Biol Chem 2002;277:21197–21206.
  • Anada Y, Igarashi Y, Kihara A. The immunomodulator FTY720 is phosphorylated and released from platelets. Eur J Pharmacol 2007;568:106–111.
  • Frej C, Andersson A, Larsson B, Guo LJ, Norström E, Happonen KE, Dahlbäck B. Quantification of sphingosine 1-phosphate by validated LC-MS/MS method revealing strong correlation with apolipoprotein M in plasma but not in serum due to platelet activation during blood coagulation. Anal Bioanal Chem 2015;407:8533–8542.
  • Aoki S, Yatomi Y, Ohta M, Osada M, Kazama F, Satoh K, Nakahara K, Ozaki Y. Sphingosine 1-phosphate-related metabolism in the blood vessel. J Biochem 2005;138:47–55.
  • Wilkerson BA, Grass GD, Wing SB, Argraves WS, Argraves KM. Sphingosine 1-phosphate (S1P) carrier-dependent regulation of endothelial barrier: High density lipoprotein (HDL)-S1P prolongs endothelial barrier enhancement as compared with albumin-S1P via effects on levels, trafficking, and signaling of S1P1. J Biol Chem 2012;287:44645–44653.
  • Maceyka M, Spiegel S. Sphingolipid metabolites in inflammatory disease. Nature 2014;510:58–67.
  • Jenkins RW, Canals D, Idkowiak-Baldys J, Simbari F, Roddy P, Perry DM, Kitatani K, Luberto C, Hannun YA. Regulated secretion of acid sphingomyelinase: Implications for selectivity of ceramide formation. J Biol Chem 2010;285:35706–35718.
  • Simon CG Jr, Chatterjee S, Gear AR Sphingomyelinase activity in human platelets. Thromb Res 1998;90:155–161.
  • Wong ML, Xie B, Beatini N, Phu P, Marathe S, Johns A, Gold PW, Hirsch E, Williams KJ, Licinio J, et al. Acute systemic inflammation up-regulates secretory sphingomyelinase in vivo: a possible link between inflammatory cytokines and atherogenesis. Proc Natl Acad Sci USA 2000;97:8681–8686.
  • Kornhuber J, Rhein C, Müller CP, Mühle C. Secretory sphingomyelinase in health and disease. Biol Chem 2015;396:707–736.
  • Naghavi M, John R, Naguib S, Siadaty MS, Grasu R, Kurian KC, van Winkle WB, Soller B, Litovsky S, Madjid M, et al. pH heterogeneity of human and rabbit atherosclerotic plaques; a new insight into detection of vulnerable plaque. Atherosclerosis 2002;164:27–35.
  • Sneck M, Nguyen SD, Pihlajamaa T, Yohannes G, Riekkola ML, Milne R, Kovanen PT, Oörni K. Conformational changes of apoB-100 in SMase-modified LDL mediate formation of large aggregates at acidic pH. J Lipid Res 2012;53:1832–1839.
  • Chen W-F, Lee J-J, Chang C-C, Lin K-H, Wang H, Sheu J-R. Platelet protease-activated receptor (PAR)4, but not PAR1, associated with neutral sphingomyelinase responsible for thrombin-stimulated ceramide-NF-κB signaling in human platelets. Haematol 2013;98:793–801.
  • Setzer F, Oberle V, Bläss M, Möller E, Russwurm S, Deigner HP, Claus RA, Bauer M, Reinhart K, Lösche W. Platelet-derived microvesicles induce differential gene expression in monocytic cells: a DNA microarray study. Platelets 2006;17:571–576.
  • Kluk MJ, Hla T. Signaling of sphingosine-1-phosphate via the S1P/EDG-family of G-protein-coupled receptors. Biochim Biophys Acta 2002;1582:72–80.
  • Goerge T, Ho-Tin-Noe B, Carbo C, Benarafa C, Remold-O’Donnell E, Zhao BQ, Cifuni SM, Wagner DD. Inflammation induces haemorrhage in thrombocytopenia. Blood 2008;111:4958–4964.
  • Lucke S, Levkau B. Endothelial functions of sphingosine-1-phosphate. Cell Physiol Biochem 2010;26:87–96.
  • Yatomi Y, Ohmori T, Rile G, Kazama F, Okamoto H, Sano T, Satoh K, Kume S, Tigyi G, Igarashi Y, et al. Sphingosine 1-phosphate as a major bioactive lysophospholipid that is released from platelets and interacts with endothelial cells. Blood 2000;96:3431–3438.
  • Xiong Y, Hla T. S1P control of endothelial integrity. Curr Top Microbiol Immunol 2014;378:85–105.
  • Garcia JG, Liu F, Verin AD, Birukova A, Dechert MA, Gerthoffer WT, Bamberg JR, English D. Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edg-dependent cytoskeletal rearrangement. J Clin Invest 2001;108:689–701.
  • Schaphorst KL, Chiang E, Jacobs KN, Zaiman A, Natarajan V, Wigley F, Garcia JG. Role of sphingosine-1 phosphate in the enhancement of endothelial barrier integrity by platelet-released products. Am J Physiol Lung Cell Mol Physiol 2003;285:L258–L267.
  • English D, Garcia JG, Brindley DN. Platelet-released phospholipids link haemostasis and angiogenesis. Cardiovasc Res 2001;49:588–599.
  • Walsh TG, Metharom P, Berndt MC. The functional role of platelets in the regulation of angiogenesis. Platelets 2015;26:199–211.
  • Herzog BH1, Fu J, Wilson SJ, Hess PR, Sen A, McDaniel JM, Pan Y, Sheng M, Yago T, Silasi-Mansat R, et al. Podoplanin maintains high endothelial venule integrity by interacting with platelet CLEC-2. Nature. 2013;502:105–109.
  • Lin CI, Chen CN, Lin PW, Lee H. Sphingosine 1-phosphate regulates inflammation-related genes in human endothelial cells through S1P1 and S1P3. Biochem Biophys Res Commun 2007;355:895–901.
  • Iino J, Osada M, Kurano M, Kaneko M, Ohkawa R, Satoh Y, Okubo S, Ozaki Y, Tozuka M, Tsuno NH, Yatomi Y. Platelet-derived sphingosine 1-phosphate induces migration of Jurkat T cells. Lipids Health Dis 2014;13:150.
  • Florey O, Haskard DO. Sphingosine 1-phosphate enhances Fc gamma receptor-mediated neutrophil activation and recruitment under flow conditions. J Immunol 2009;183:2330–2336.
  • Mahajan-Thakur S, Sostmann BD, Fender AC, Behrendt D, Felix SB, Schrör K, Rauch BH. Sphingosine-1-phosphate induces thrombin receptor PAR-4 expression to enhance cell migration and COX-2 formation in human monocytes. J Leukoc Biol 2014;96:611–618.
  • Fuentes EQ, Fuentes FQ, Andrés V, Pello OM, Font de Mora J, Palomo IG. Role of platelets as mediators that link inflammation and thrombosis in atherosclerosis. Platelets 2013;24:255–262.
  • Nording HM, Seizer P, Langer HF. Platelets in inflammation and atherogenesis. Front Immunol 2015;6:98.
  • Daum G, Grabski A, Reidy MA. Sphingosine 1-phosphate: A regulator of arterial lesions. Arterioscler Thromb Vasc Biol 2009;29:1439–1443.
  • Potì F, Simoni M, Nofer JR. Atheroprotective role of high-density lipoprotein (HDL)-associated sphingosine-1-phosphate (S1P). Cardiovasc Res 2014;103:395–404.
  • Shimamura K, Takashiro Y, Akiyama N, Hirabayashi T, Murayama T. Expression of adhesion molecules by sphingosine 1-phosphate and histamine in endothelial cells. Eur J Pharmacol 2004;486:141–150.
  • Kase H, Hattori Y, Jojima T, Okayasu T, Tomizawa A, Suzuki K, Banba N, Monden T, Satoh H, Akimoto K, Kasai K. Globular adiponectin induces adhesion molecule expression through the sphingosine kinase pathway in vascular endothelial cells. Life Sci 2007;81:939–943.
  • Galvani S, Sanson M, Blaho VA, Swendeman SL, Conger H, Dahlbäck B, Kono M, Proia RL, Smith JD, Hla T. HDL-bound sphingosine 1-phosphate acts as a biased agonist for the endothelial cell receptor S1P1 to limit vascular inflammation. Sci Signal. 2015;11;8(389): ra79.
  • Deutschman DH, Carstens JS, Klepper RL, Smith WS, Page MT, Young TR, Gleason LA, Nakajima N, Sabbadini RA. Predicting obstructive coronary artery disease with serum sphingosine-1-phosphate. Am Heart J 2003;146:62–68.
  • Son DJ, Lee HW, Shin HW, Lee JJ, Yoo HS, Kim TJ, Yun YP, Hong JT. Enhanced release of sphingosine-1-phosphate from hypercholesterolemic platelets: Role in development of hypercholesterolemic atherosclerosis. Prostaglandins Leukot Essent Fatty Acids 2008;78:383–390.
  • Münzer P, Borst O, Walker B, Schmid E, Feijge MA, Cosemans JM, Chatterjee M, Schmidt EM, Schmidt S, Towhid ST, et al. Acid sphingomyelinase regulates platelet cell membrane scrambling, secretion, and thrombus formation. Arterioscler Thromb Vasc Biol 2014;34:61–71.
  • Sugiyama A, Yatomi Y, Ozaki Y, Hashimoto K. Sphingosine 1-phosphate induces sinus tachycardia and coronary vasoconstriction in the canine heart. Cardiovasc Res 2000;46:119–125.
  • Ohmori T, Yatomi Y, Osada M, Ozaki Y. Platelet-derived sphingosine 1-phosphate induces contraction of coronary artery smooth muscle cells via S1P2. J Thromb Haemost 2004;2:203–205.
  • Nofer JR, Bot M, Brodde M, Taylor PJ, Salm P, Brinkmann V, van Berkel T, Assmann G, Biessen EA. FTY720, a synthetic sphingosine 1 phosphate analogue, inhibits development of atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 2007;115:501–508.
  • Keul P, Tölle M, Lucke S, von Wnuck Lipinski K, Heusch G, Schuchardt M, van der Giet M, Levkau B. The sphingosine-1-phosphate analogue FTY720 reduces atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2007;27:607–613.
  • Varga J, Abraham D. Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest 2007;117:557–567.
  • Pattanaik D, Brown M, Postlethwaite BC, Postlethwaite AE Pathogenesis of Systemic Sclerosis. Front Immunol 2015;6:272.
  • Bhattacharyya S, Wei J, Varga J. Understanding fibrosis in systemic sclerosis: Shifting paradigms, emerging opportunities. Nat Rev Rheumatol 2011;8:42–54.
  • Maugeri N, Rovere-Querini P, Baldini M, Baldissera E, Sabbadini MG, Bianchi ME, Manfredi AA. Oxidative stress elicits platelet/leukocyte inflammatory interactions via HMGB1: A candidate for microvessel injury in sytemic sclerosis. Antioxid Redox Signal 2014;20:1060–1074.
  • Postlethwaite AE, Chiang TM. Platelet contributions to the pathogenesis of systemic sclerosis. Curr Opin Rheumatol 2007;19:574–579.
  • Ramirez GA, Franchini S, Rovere-Querini P, Sabbadini MG, Manfredi AA, Maugeri N. The role of platelets in the pathogenesis of systemic sclerosis. Front Immunol 2012;3:160.
  • Pattanaik D, Postlethwaite AE. A role for lysophosphatidic acid and sphingosine 1-phosphate in the pathogenesis of systemic sclerosis. Discov Med 2010;10:161–167.
  • Tokumura A, Carbone LD, Yoshioka Y, Morishige J, Kikuchi M, Postlethwaite A, Watsky MA. Elevated serum levels of arachidonoyl-lysophosphatidic acid and sphingosine 1-phosphate in systemic sclerosis. Int J Med Sci 2009;6:168–176.
  • Pattanaik D, Brown M, Postlethwaite AE. Vascular involvement in systemic sclerosis (scleroderma). J Inflam Res 2011;4:105–125.
  • Bu S, Asano Y, Bujor A, Highland K, Hant F, Trojanowska M. Dihydrosphingosine 1-phosphate has a potent antifibrotic effect in scleroderma fibroblasts via normalization of phosphatase and tensin homolog levels. Arthritis Rheum 2010;62:2117–2126.
  • Couser WG. Pathogenesis of glomerular damage in glomerulonephritis. Nephrol Dial Transplant 1998;13:10–15.
  • Barnes JL. Platelets in glomerular disease. Nephron 1997;77:378–393.
  • Johnson R, Iida H, Yoshimura A, Floege J, Bowen-Pope DF. Platelet-derived growth factor: a potentially important cytokine in glomerular disease. Kidney Int 1992;41:590–594.
  • Schwarzenberger C, Sradnick J, Lerea KM, Goligorsky MS, Nieswandt B, Hugo CP, Hohenstein B. Platelets are relevant mediators of renal injury induced by primary endothelial lesions. Am J Physiol Renal Physiol 2015;308:F1238–F1246.
  • Koch A, Pfeilschifter J, Huwiler A. Sphingosine 1-Phosphate in Renal Diseases. Cell Physiol Biochem 2013;31:745–760.
  • Schwalm S, Pfeilschifter J, Huwiler A. Targeting the sphingosine kinase/sphingosine 1-phosphate pathway to treat chronic inflammatory kidney diseases. Basic Clin Pharmacol Toxicol 2014;114:44–49.
  • Johnson RJ, Garcia RL, Pritzl P, Alpers CE. Platelets mediate glomerular cell proliferation in immune complex nephritis induced by anti-mesangial cell antibodies in the rat. Am J Pathol 1990;136:369–374.
  • Hanafusa N, Yatomi Y, Yamada K, Hori Y, Nangaku M, Okuda T, Fujita T, Kurokawa K, Fukagawa M. Sphingosine 1-phosphate stimulates rat mesangial cell proliferation from outside the cells. Nephrol Dial Transplant 2002;17:580–586.
  • Katsuma S, Shiojima S, Hirasawa A, Suzuki Y, Takagaki K, Murai M, Kaminishi Y, Hada Y, Koba M, Muso E, et al. Genomic analysis of a mouse model of immunoglobulin A nephropathy reveals an enhanced PDGF-EDG5 cascade. Pharmacogenomics J 2001;1:211–217.
  • Osada M, Yatomi Y, Ohmori T, Aoki S, Hosogaya S, Ozaki Y. Involvement of sphingosine 1-phosphate, a platelet-derived bioactive lipid, in contraction of mesangium cells. J Biochem 2007;142:351–355.
  • Johnson RJ, Alpers CE, Pritzl P, Schulze M, Baker P, Pruchno C, Couser WG. Platelets mediate neutrophil-dependent immune complex nephritis in the rat. J Clin Invest 1988;82:1225–1235.
  • Zachem CR, Alpers CE, Way W, Shankland SJ, Couser WG, Johnson RJ. A role for P-selectin in neutrophil and platelet infiltration in immune complex glomerulonephritis. J Am Soc Nephrol 1997;8:1838–1844.
  • Yatomi Y, Ruan F, Megidish T, Toyokuni T, Hakomori S, Igarashi Y. N,N-dimethylsphingosine inhibition of sphingosine kinase and sphingosine 1-phosphate activity in human platelets. Biochemistry 1996;35:626–633.
  • Deguchi H, Yegneswaran S, Griffin JH. Sphingolipids as bioactive regulators of thrombin generation. J Biol Chem 2004;279:12036–12042.
  • Martini S, Krämer S, Loof T, Rosenke YW, Daig U, Budde K, Neumayer H-H, Peters H. S1P modulator FTY720 limits matrix expansion in acute anti-thy1 mesangioproliferative glomerulonephritis. Am J Physiol Renal Physiol 2007;292:F1761–F1770.
  • Brinkmann V, Billich A, Baumruker T, Heining P, Schmouder R, Francis G, Aradhye S, Burtin P. Fingolimod (FTY720): Discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov 2010;9:883–897.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.