95
Views
20
CrossRef citations to date
0
Altmetric
Effect of Magnetic Field on S. Cerevisiae

Effect of 2.45 mT sinusoidal 50 Hz magnetic field on Saccharomyces cerevisiae strains deficient in DNA strand breaks repair

, &
Pages 602-611 | Received 17 Sep 2008, Accepted 07 Feb 2010, Published online: 15 Jun 2010

References

  • Ahlbom A, Day N, Feychting M, Roman E, Skinner J, Dockerty J, Linet M, McBride M, Michaelis J, Olsen JF, Tynes T, Verkasalo PK. 2000. A pooled analysis of magnetic fields and childhood leukaemia. British Journal of Cancer 83:692–698.
  • Ahmad M, Galland P, Ritz T, Wiltschko R, Wiltschko W. 2007. Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana. Planta 225:615–624.
  • Botstein D, Fink GR. 1988. Yeast: An experimental organism for modern biology. Science 240:1439–1443.
  • Cellini L, Grande R, Di Campli E, Di Bartolomeo S, Di Giulio M, Robuffo I, Trubiani O, Mariggio MA. 2008. Bacterial response to the exposure of 50 Hz electromagnetic fields. Bioelectromagnetics 29:302–311.
  • Cintolesi F, Ritz T, Kay CWM, Timmel CR, Hore PJ. 2003. Anisotropic recombination of an immobilized photoinduced radical pair in a 50-μT magnetic field: A model avian photomagnetoreceptor. Chemical Physics 294:385–399.
  • Coleman CB, Gonzalez-Villalobos RA, Allen PL, Johanson K, Guevorkian K, Valles JM, Hammond TG. 2007. Diamagnetic levitation changes growth, cell cycle and gene expression of Saccharomyces cerevisiae. Biotechnology and Bioengineering 98:854–863.
  • Crumpton MJ, Collins AR. 2004. Are environmental electromagnetic fields genotoxic? DNA Repair 3:1385–1387.
  • European Union. 2004. Directive 2004/40/EC of the European Parliament and of the council of 29 April 2004 on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields) (18th individual Directive within the meaning of Article 16(1) of Directive 89/391/EEC). Official Journal of the European Union L 159 of 30 April 2004.
  • Eveson RW, Timmel CR, Brocklehurst B, Hore PJ, McLauchlan KA. 2000. The effects of weak magnetic fields on radical recombination reactions in micelles. International Journal of Radiation Biology 76:1509–1522.
  • Fatigoni C, Dominici L, Moretti M, Villarini M, Monarca S. 2005. Genotoxic effects of extremely low frequency (ELF) magnetic fields (MF) evaluated by the tradescantia-micronucleus assay. Environmental Toxicology 20:585–591.
  • Feldmann H, Winnacker EL. 1993. A putative homologue of the human autoantigen ku from Saccharomyces cerevisiae. Journal of Biological Chemistry 268:12895–12900.
  • Friedl AA, Kiechle M, Fellerhoff B, Eckardt-Schupp F. 1998. Radiation-induced chromosome aberrations in Saccharomyces cerevisiae: Influence of DNA repair pathways. Genetics 148:975–988.
  • García AM, Sisternas A, Perez Hoyos S. 2008. Occupational exposure to extremely low frequency electric and magnetic fields and Alzheimer disease: A meta-analysis. International Journal of Epidemiology 37:329–340.
  • Greenland S, Sheppard AR, Kaune WT, Poole C, Kelsh MA. 2000. A pooled analysis of magnetic fields, wire codes, and childhood leukemia. Epidemiology 11:624–634.
  • Hisamitsu T, Narita K, Kasahara T, Seto A, Yu Y, Asano K. 1997. Induction of apoptosis in human leukemic cells by magnetic fields. Japanese Journal of Physiology 47:307–310.
  • Hoffman CS, Winston F. 1987. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272.
  • Huss A, Spoerri A, Egger M, Röösli M. 2009. Residence near power lines and mortality from neurodegenerative diseases: Longitudinal study of the Swiss population. American Journal of Epidemiology 169:167–175.
  • International Agency for Research of Cancer (IARC). 2002. Static and extremely low-frequency (ELF) electric and magnetic fields: IARC monographs on the evaluation of carcinogenic risk to humans. International Agency for Research on Cancer, Vol. 80. Lyon, France.
  • International Commission on Non-Ionizing Radiation Protection (ICNIRP). 1998. Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Physics 74:494–522.
  • Ivancsits S, Diem E, Jahn O, Rüdiger HW. 2003. Intermittent extremely low frequency electromagnetic fields cause DNA damage in a dose-dependent way. International Archives of Occupational and Environmental Health 76:431–436.
  • Ivancsits S, Diem E, Pilger A, Rüdiger HW, Jahn O. 2002. Induction of DNA strand breaks by intermittent exposure to extremely-low-frequency electromagnetic fields in human diploid fibroblasts. Mutation Research 519:1–13.
  • Ivanov EL, Haber JE. 1995. RAD1 and RAD10, but no other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae. Molecular and Cellular Biology 15:2245–2251.
  • Iwasaka M, Ikehata M, Miyakoshi J, Ueno S. 2004. Strong static magnetic field effects on yeast proliferation and distribution. Bioelectrochemistry 65:59–68.
  • Juutilainen J, Kumlin T, Naarala J. 2006. Do extremely low frequency magnetic fields enhance the effects of environmental carcinogens? A meta-analysis of experimental studies. International Journal of Radiation Biology 82:1–12.
  • Lai H, Singh NP. 2004. Magnetic-field-induced DNA strand breaks in brain cells of the rat. Environmental Health Perspectives 112:687–694.
  • Liu Y, Edge R, Henbest K, Timmel CR, Hore PJ, Gast P. 2005. Magnetic field effect on singlet oxygen production in a biochemical system. Chemical Communications 2:174–176.
  • Luceri C, De Filippo C, Giovannelli L, Blangiardo M, Cavalieri D, Alietti F, Pampaloni M, Andreuccetti D, Pieri L, Bambi F, Biggeri A, Dolara P. 2005. Extremely low-frequency electromagnetic fields do not affect DNA damage and gene expression profiles of yeast and human lymphocytes. Radiation Research 164:277–285.
  • McNamee JP, Bellier PV, Chauhan V, Gajda GB, Lemay E, Thansandote A. 2005. Evaluating DNA damage in rodent brain after acute 60 Hz magnetic-field exposure. Radiation Research 164:791–797.
  • Mezei G, Gadallah M, Kheifets L. 2008. Residential magnetic field exposure and childhood brain cancer: A meta-analysis. Epidemiology 19:424–430.
  • Milne GT, Jin S, Shannon KB, Weaver DT. 1996. Mutations at two ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae. Molecular and Cellular Biology 16:4189–4198.
  • Nakasono S, Ikehata M, Dateki M, Yoshie S, Shigemitsu T, Negishi T. 2008. Intermediate frequency magnetic fields do not have mutagenic, co-mutagenic or gene conversion potentials in microbial genotoxicity tests. Mutation Research 649:187–200.
  • Narita K, Hanakawa K, Kasahara T, Hisamitsu T, Asano K. 1997. Induction of apoptotic cell death in human leukemic cell line, HL-60, by extremely low frequency electric magnetic fields: Analysis of the possible mechanisms in vitro. In vivo 11:329–336.
  • Neutra RR, DelPizzo V, Lee GM. 2002. An evaluation of the possible risks from electric and magnetic fields (EMFs) from power lines, internal wiring, electrical occupations, and appliances, California Department of Health Services (CDHS). California EMF Program. Oakland, CA, USA. (http://www.ehib.org/emf/RiskEvaluation/riskeval.html).
  • Nicolás AL, Munz PL, Young CSH. 1995. A modified single-strand annealing model best explains the joining of DNA double-strand breaks in mammalian cells and all extracts. Nucleic Acid Research 23:1036–1043.
  • Novák J, Strašák L, Fojt L, Slaninová I, Vetterl V. 2007. Effects of low frequency magnetic fields on the viability of yeast Saccharomyces cerevisiae. Bioelectrochemistry 70:115–121.
  • O'Carroll MJ, Henshaw DL. 2008. Aggregating disparate epidemiological evidence: Comparing two seminal EMF reviews. Risk Analysis 28:225–234.
  • Olive PL. 1999. DNA damage and repair in individual cells: applications of the comet assay in radiobiology. International Journal of Radiation Biology 75:395–405.
  • Potenza L, Cucchiarini L, Piatti E, Angelini V, Dachá M. 2004. Effects of high static magnetic field exposure on different DNAs. Bioelectromagnetics 25:352–355.
  • Ritz T, Thalau P, Phillips JB, Wiltschko R, Wiltschko W. 2004. Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 429:177–180.
  • Ruiz-Gómez MJ, De la Peña L, Prieto-Barcia MI, Pastor JM, Gil L, Martínez-Morillo M. 2002. Influence of 1 and 25 Hz, 1.5 mT magnetic fields on antitumor drug potency in a human adenocarcinoma cell line. Bioelectromagnetics 23:578–585.
  • Ruiz-Gómez MJ, Martínez-Morillo M. 2005. Enhancement of the cell-killing effect of ultraviolet-C radiation by short-term exposure to a pulsed magnetic field. International Journal of Radiation Biology 81:483–490.
  • Ruiz-Gómez MJ, Martínez-Morillo M. 2009. Electromagnetic fields and the induction of DNA strand breaks. Electromagnetic Biology and Medicine 28:201–214.
  • Ruiz-Gómez MJ, Prieto-Barcia MI, Ristori-Bogajo E, Martínez-Morillo M. 2004. Static and 50 Hz magnetic fields of 0.35 and 2.45 mT have no effect on the growth of Saccharomyces cerevisiae. Bioelectrochemistry 64:151–155.
  • Scarfi MR, Sannino A, Perrotta A, Sarti M, Mesirca P, Bersani F. 2005. Evaluation of genotoxic effects in human fibroblasts after intermittent exposure to 50 Hz electromagnetic fields: A confirmatory study. Radiation Research 164:270–276.
  • Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR). 2009. Health effects of exposure to EMF. SCENIHR. European Union (EU),
  • Siede W, Friedl AA, Dianova I, Eckardt-Schupp F, Friedberg EC. 1996. The Saccharomyces cerevisiae Ku autoantigen homologue affects radiosensitivity only in the absence of homologous recombination. Genetics 142:91–102.
  • Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW. 1983. The double-strand-break repair model for recombination. Cell 33:25–35.
  • Timmel CR, Henbest KB. 2004. A study of spin chemistry in weak magnetic fields. Philosophical Transactions of the Royal Society London A 362:2573–2589.
  • Umezu K, Sugawara N, Chen C, Haber JE, Kolodner RD. 1998. Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism. Genetics 148:989–1005.
  • Vijayalaxmi, Prihoda TJ. 2009. Genetic damage in mammalian somatic cells exposed to extremely low frequency electro-magnetic fields: A meta-analysis of data from 87 publications (1990–2007). International Journal of Radiation Biology 85:196–213.
  • Villarini M, Moretti M, Scassellati-Sforzolini G, Boccioli B, Pasquini R. 2006. Effects of co-exposure to extremely low frequency (50 Hz) magnetic fields and xenobiotics determined in vitro by the alkaline comet assay. Science of the Total Environment 361:208–219.
  • Williams PA, Ingebretsen RJ, Dawson RJ. 2006. 14.6 mT ELF magnetic field exposure yields no DNA breaks in model system Salmonella, but provides evidence of heat stress protection. Bioelectromagnetics 27:445–450.
  • Wolf FI, Torsello A, Tedesco B, Fasanella S, Boninsegna A, D'Ascenzo M, Grassi C, Azzena GB, Cittadini A. 2005. 50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: Possible involvement of a redox mechanism. Biochimica et Biophysica Acta 1743:120–129.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.