151
Views
8
CrossRef citations to date
0
Altmetric
BASIC RESEARCH EFFECTS OF EXTREMELY LOW FREQUENCY MAGNETIC FIELDS (ELF-MF)

ELF-MF transiently increases skeletal myoblast migration: Possible role of calpain system

, , &
Pages 548-561 | Received 15 Oct 2012, Accepted 28 Jan 2013, Published online: 27 Feb 2013

References

  • Allen RG, Tresini M. 2000. Oxidative stress and gene regulation. Free Radical Biology & Medicine 28:463–499.
  • Arnaudeau S, Holzer N, König S, Bader CR, Bernheim L. 2006. Calcium sources used by post-natal human myoblasts during initial differentiation. Journal of Cellular Physiology 208:435–445.
  • Arthur JS, Mykles DL. 2000. Calpain zymography with casein or fluorescein isothiocyanate casein. Methods in Molecular Biology 144:109–116.
  • Averna M, De Tullio R, Passalacqua M, Salamino F, Pontremoli S, Melloni E. 2001. Changes in intracellular calpastatin localization are mediated by reversible phosphorylation. Biochemical Journal 354:25–30.
  • Averna M, De Tullio R, Capini P, Salamino F, Pontremoli S, Melloni E. 2003. Changes in calpastatin localization and expression during calpain activation: A new mechanism for the regulation of intracellular Ca2+-dependent proteolysis. Cellular and Molecular Life Sciences 60:2669–2678.
  • Averna M, Stifanese R, De Tullio R, Passalacqua M, Defranchi E, Salamino F, Melloni E, Pontremoli S. 2007. Regulation of calpain activity in rat brain with altered Ca2 + homeostasis. The Journal of Biological Chemistry 282:2656–2665.
  • Balcerzak D, Poussard S, Brustis JJ, Elamrani N, Soriano M, Cottin P, Ducastaing A. 1995. An antisense oligodeoxyribonucleotide to m-calpain mRNA inhibits myoblast fusion. Journal of Cell Science 108:2077–2082.
  • Balcerzak D, Cottin P, Poussard S, Cucuron A, Brustis JJ, Ducastaing A. 1998. Calpastatin-modulation of m-calpain activity is required for myoblast fusion. European Journal of Cell Biology 75:247–253.
  • Barnoy S, Supino-Rosin L, Kosower NS. 2000. Regulation of calpain and calpastatin in differentiating myoblasts: mRNA levels, protein synthesis and stability. Biochemical Journal 351:413–420.
  • Bersani F, Marinelli F, Ognibene A, Matteucci A, Cecchi S, Santi S, Squarzoni S, Maraldi NM. 1997. Intramembrane protein distribution in cell cultures is affected by 50 Hz pulsed magnetic fields. Bioelectromagnetics 18:463–469.
  • Bhatt A, Kaverina I, Otey C, Huttenlocher A. 2002. Regulation of focal complex composition and disassembly by tha calcium dependent protease calpain. Journal of Cell Science 115:3415–3425.
  • Blank M, Goodman R. 2004a. Comment: A biological guide for electromagnetic safety: The stress response. Bioelectromagnetics 25:642–646.
  • Blank M, Goodman R. 2004b. Initial interactions in electromagnetic field-induced biosynthesis. Journal of Cellular Physiology 199: 359–363.
  • Blank M, Goodman R. 2008. A mechanism for stimulation of biosynthesis by electromagnetic fields: Charge transfer in DNA and base pair separation. Journal of Cellular Physiology 214:20–26.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254.
  • Calle Y, Carragher NO, Thrasher AJ, Jones GE. 2006. Inhibition of calpain stabilises podosomes and impairs dendritic cell motility. Journal of Cell Science 119:2375–2385.
  • Dargelos E, Brulé C, Combaret L, Hadj-Sassi A, Dulong S, Poussard S, Cottin P. 2007. Involvement of the calcium-dependent proteolytic system in skeletal muscle aging. Experimental Gerontology 42:1088–1098.
  • Dargelos E, Brulé C, Stuelsatz P, Mouly V, Veschambre P, Cottin P, Poussard S. 2010. Up-regulation of calcium-dependent proteolysis in human myoblasts under acute oxidative stress. Experimental Cell Research 316:115–125.
  • De Mattei M, Varani K, Masieri FF, Pellati A, Ongaro A, Fini M, Cadossi R, Vincenzi F, Borea PA, Caruso A. 2009. Adenosine analogs and electromagnetic fields inhibit prostaglandin E2 release in bovine synovial fibroblasts. Osteoarthritis Cartilage 17:252–262.
  • De Tullio RD, Passalacqua M, Averna M, Salamino F, Melloni E, Pontremoli S. 1999. Changes in intracellular localization of calpastatin during calpain activation. Biochemical Journal 343:467–472.
  • Dedieu S, Mazères G, Cottin P, Brustis J-J. 2002. Involvement of myogenic factors during fusion in cell line C2C12. The International Journal of Developmental Biology 46:235–241.
  • Dedieu S, Dourdin N, Dargelos E, Poussard S, Veschambre P, Cottin P, Brustis JJ. 2003a. Calpain and myogenesis: Development of a convenient cell culture model. Biology of the Cell 94:65–76.
  • Dedieu S, Mazères G, Dourdin N, Cottin P, Brustis J-J. 2003b. Transactivation of capn2 by myogenic regulatory factors during myogenesis. Journal of Molecular Biology 326:453–465.
  • Dedieu S, Mazères G, Poussard S, Brustis JJ, Cottin P. 2003c. Myoblast migration is prevented by a calpain-dependent accumulation of MARCKS. Biology of the Cell 95:615–623.
  • Dedieu S, Poussard S, Mazères G, Grise F, Dargelos E, Cottin P, Ducastain A. 2004. Myoblast migration is regulated by calpain through its involvement in cell attachment and cytoskeletal organisation. Experimental Cell Research 292:187–200.
  • Delle Monache S, Alessandro R, Iorio R, Gualtieri G, Colonna R. 2008. Extremely low frequency electromagnetic fields (ELF-EMFs) induce in vitro angiogenesis process in human endothelial cells. Bioelectromagnetics 29:640–648.
  • Di Loreto S, Falone S, Caracciolo V, Sebastiani P, D’Alessandro A, Mirabilio A, Zimmitti V, Amicarelli F. 2009. Fifty hertz extremely low-frequency magnetic field exposure elicits redox and trophic response in rat-cortical neurons. Journal of Cellular Physiology 219:334–343.
  • Disatnik MH, Boutet SC, Pacio W, Chan AY, Ross LB, Lee CH, Rando TA. 2004. The bi-directional translocation of MARCKS between membrane and cytosol regulates integrin-mediated muscle cell spreading. Journal of Cell Science 117:4469–4479.
  • Dourdin N, Bhatt AK, Dutt P, Greer PA, Arthur JS, Elce JS, Huttenlocher A. 2001. Reduced cell migration and disruption of the actin cytoskeleton in calpain-deficient embryonic fibroblasts. Journal of Biological Chemistry 276:48382–4838.
  • Dulong S, Goudenege S, Vuillier-Devillers K, Manenti S, Poussard S, Cottin P. 2004. Myristoylated alanine-rich C kinase substrate (MARCKS) is involved in myoblast fusion through its regulation by protein kinase Calpha and calpain proteolytic cleavage. Biochemical Journal 382:1015–1023.
  • Emori Y, Saigo K. 1994. Calpain localization changes in coordination with actin-related cytoskeletal changes during early embryonic development of Drosophila. Journal of Biological Chemistry 269: 25137–25142.
  • Formigli L, Meacci E, Sassoli C, Chellini F, Giannini R, Quercioli F, Tiribilli B, Squecco R, Bruni P, Francini F, Zecchi-Orlandini S. 2005. Sphingosine 1-phosphate induces cytoskeletal reorganization in C2C12 myoblasts: Physiological relevance for stress fibres in the modulation of ion current through stretch-activated channels. Journal of Cell Science 118:1161–1171.
  • Formigli L, Meacci E, Sassoli C, Squecco R, Nosi D, Chellini F, Naro F, Francini F, Zecchi-Orlandini S. 2007. Cytoskeleton/stretch-activated ion channel interaction regulates myogenic differentiation of skeletal myoblasts. Journal of Cellular Physiology 211:296–306.
  • Formigli L, Sassoli C, Squecco R, Bini F, Martinesi M, Chellini F, Luciani G, Sbrana F, Zecchi-Orlandini S, Francini F, Meacci E. 2009. Regulation of transient receptor potential canonical channel 1 (TRPC1) by sphingosine 1-phosphate in C2C12 myoblasts and its relevance for a role of mechanotransduction in skeletal muscle differentiation. Journal of Cell Science 122:1322–1333.
  • Franco S, Perrin B, Huttenlocher A. 2004. Isoform specific function of calpain 2 in regulating membrane protusion. Experimental Cell Research 299:179–187.
  • Gartzke J, Lange K. 2002. Cellular target of weak magnetic fields: Ionic conduction along actin filaments of microvilli. American Journal of Physiology – Cell Physiology 283(5):C1333–1346.
  • Glading A, Chang P, Lauffenburger DA, Wells A. 2000. Epidermal growth factor receptor activation of calpain is required for fibroblast motility and occurs via an ERK/MAP kinase signaling pathway. The Journal of Biological Chemistry 275:2390–2398.
  • Glading A, Lauffenburger DA, Wells A. 2002. Cutting to the chase: Calpain proteases in cell motility. Trends in Cell Biology 12:46–54.
  • Glading A, Bodnar RJ, Reynolds IJ, Shiraha H, Satish L, Potter DA, Blair HC, Wells A. 2004. Epidermal growth factor activates m-calpain (calpain II), at least in part, by extracellular signal- regulated kinase-mediated phosphorylation. Molecular and Cellular Biology 24:2499–2512.
  • Goetsch KP, Niesler CU. 2011. Optimization of the scratch assay for in vitro skeletal muscle wound healing analysis. Analytical Biochemistry 411:158–160.
  • Goll DE, Thompson VF, Li H, Wei W, Cong J. 2003. The calpain system. Physiological Reviews 83:731–801.
  • Grassi C, D’Ascenzo M, Torsello A, Martinotti G, Wolf F, Cittadini A, Azzena GB. 2004. Effects of 50 Hz electromagnetic fields on voltage-gated Ca2 + channels and their role in modulation of neuroendocrine cell proliferation and death. Cell Calcium 35: 307–315.
  • Huang L, Dong L, Chen Y, Qi H, Xiao D. 2006. Effects of sinusoidal magnetic field observed on cell proliferation, ion concentration and osmolarity in two human cancer cell lines. Electromagnetic Biology and Medicine 25:113–126.
  • Huttenlocher A, Palecek SP, Lu Q, Zhang W, Mellgren RL, Lauffenburger DA, Ginsberg MH, Horwitz AF. 1997. Regulation of cell migration by the calcium-dependent protease calpain. The Journal of Biological Chemistry 272:32719–32722.
  • Jia C, Zhou Z, Liu R, Chen S, Xia R. 2007. EGF receptor clustering is induced by a 0.4 mT power frequency magnetic field and blocked by the EGF receptor tyrosine kinase inhibitor PD153035. Bioelectromagnetics 28:197–207.
  • Ke XQ, Sun WJ, Lu DQ, Fu YT, Chiang H. 2008. 50-Hz magnetic field induces EGF-receptor clustering and activates RAS. International Journal of Radiation Biology 84:413–420.
  • Kefaloyianni E, Gaitanaki C, Beis I. 2006. ERK1/2 and p38-MAPK signalling pathways, through MSK1, are involved in NF-kappaB transactivation during oxidative stress in skeletal myoblasts. Cellular Signalling 18:2238–2251.
  • Kirschvink JL. 1992. Uniform magnetic fields and double-wrapped coil systems: Improved techniques for the design of bioelectromagnetic experiments. Bioelectromagnetics 13:401–411.
  • Lambrechts A, Van Troys M, Ampe C. 2004. The actin cytoskeleton in normal and pathological cell motility. The International Journal of Biochemistry & Cell Biology 36:1890–1909.
  • Le Grand F, Rudnicki M. 2007. Satellite and stem cells in muscle growth and repair. Development 134:3953–3957.
  • Leloup L, Mazères G, Daury L, Cottin P, Brustis JJ. 2006. Involvement of calpains in growth factor mediated migration. The International Journal of Biochemistry & Cell Biology 38:2049–2063.
  • Leloup L, Daury L, Mazères G, Cottin P, Brustis JJ. 2007. Involvement of the ERK/MAP kinase signalling pathway in milli-calpain activation and myogenic cell migration. The International Journal of Biochemistry & Cell Biology 39:1177–1189.
  • Li H, Thompson VF, Goll DE. 2004. Effects of autolysis on properties of mu- and m-calpain. Biochimica et Biophysica Acta 3;1691(2–3): 91–103.
  • Lisi A, Pozzi D, Pasquali E, Rieti S, Girasole M, Cricenti A, Generosi R, Serafino AL, Congiu-Castellano A, Ravagnan G, Giuliani L, Grimaldi S. 2000. Three dimensional (3D) analysis of the morphological changes induced by 50 Hz magnetic field exposure on human lymphoblastoid cells (Raji). Bioelectromagnetics 21:46–51.
  • Lisi A, Ledda M, Rosola E, Pozzi D, D’Emilia E, Giuliani L, Folletti A, Modesti A, Morris SJ, Grimaldi S. 2006. Extremely low frequency electromagnetic field exposure promotes differentiation of pituitary corticotrope-derived AtT20 D16V cells. Bioelectromagnetics 27:641–651.
  • Louis M, Zanou N, Van Schoor M, Gailly P. 2008. TRPC1 regulates skeletal myoblast migration and differentiation. Journal of Cell Science 121:3951–3959.
  • Manni V, Lisi A, Pozzi D, Rieti S, Serafino A, Giuliani L, Grimaldi S. 2002. Effects of extremely low frequency (50 Hz) magnetic field on morphological and biochemical properties of human keratinocytes. Bioelectromagnetics 23:298–305.
  • Massot O, Grimaldi B, Bailly JM, Kochanek M, Deschamps F, Lambrozo J, Fillion G. 2000. Magnetic field desensitizes 5-HT(1B) receptor in brain: Pharmacological and functional studies Brain Research 858:143–150.
  • Mazères G, Leloup L, Daury L, Cottin P, Brustis J-J. 2006. Myoblast attachment and spreading are regulated by different patters by ubiquitous calpains. Cell Motility and the Cytoskeleton 63:193–207.
  • Morabito C, Rovetta F, Bizzarri M, Mazzoleni G, Fanò G, Mariggiò MA. 2010. Modulation of redox status and calcium handling by extremely low frequency electromagnetic field in C2C12 cells: A real-time, single-cell approach. Free Radical Biology & Medicine 48:579–589.
  • Nikolova T, Czyz J, Rolletschek A, Blyszczuk P, Fuchs J, Jovtchev G, Schuderer J, Kuster N, Wobus AN. 2005. Electromagnetic fields affect transcript levels of apoptosis-related genes in embryonic stem cell-derived neural progenitor cells. FASEB Journal 19:1686–1688.
  • Piacentini R, Ripoli C, Mezzogori D, Azzena GB, Grassi C. 2008. Extremely low-frequency electromagnetic fields promote in vitro neurogenesis via up-regulation of Ca(v)1-channel activity. Journal of Cellular Physiology 215:129–139.
  • Porter GA Jr, Makuck RF, Rivkees RA. 2002. Reduction in intracellular calcium levels inhibits myoblast differentiation. Journal of Biological Chemistry 277:28942–28947.
  • Potter DA, Tirnauer JS, Janssen R, Croall DE, Hughes CN, Fiacco KA, Mier JW, Maki M, Herman IM. 1998. Calpain regulates actin remodeling during cell spreading. The Journal of Cell Biology 141:647–662.
  • Poussard S, Dulong S, Aragon B, Jacques Brustis J, Veschambre P, Ducastaing A, Cottin P. 2001 Evidence for a MARCKS-PKCalpha complex in skeletal muscle. The International Journal of Biochemistry & Cell Biology 33:711–721.
  • Przybylski RJ, Szigeti V, Davidheiser S, Kirby AC. 1994. Calcium regulation of skeletal myogenesis. II. Extracellular and cell surface effects. Cell Calcium 15:132–142.
  • Raynaud F, Bonnal C, Fernandez E, Bremaud L, Cerutti M, Lebart MC, Roustan C, Ouali A, Benyamin Y. 2003. The calpain 1-α-actinin interaction. Resting complex between the calcium-dependant protease and its target in cytoskeleton. 2 European Journal of Biochemistry 70:4662–4670.
  • Roumes H, Leloup L, Dargelos E, Brustis JJ, Daury L, Cottin P. 2010. Calpains: Markers of tumor aggressiveness?Experimental Cell Research 316:1587–1599.
  • Santoro N, Lisi A, Pozzi D, Pasquali E, Serafino A, Grimaldi S. 1997. Effect of extremely low frequency (ELF) magnetic field exposure on morphological and biophysical properties of human lymphoid cell line (Raji). Biochimica et Biophysica Acta 1357:281–290.
  • Sbrana F, Sassoli C, Meacci E, Nosi D, Squecco R, Paternostro F, Tiribilli B, Zecchi-Orlandini S, Francini F, Formigli L. 2008. Role for stress fiber contraction in surface tension development and stretch-activated channel regulation in C2C12 myoblasts. American Journal of Physiology – Cell Physiology 295:C160–172.
  • Schwartz Z, Simon BJ, Duran MA, Barabino G, Chaudhri R, Boyan BD. 2008. Pulsed electromagnetic fields enhance BMP-2 dependent osteoblastic differentiation of human mesenchymal stem cells. Journal of Orthopaedic Research 26:1250–1255.
  • Shiraha H, Glading A, Chou J, Jia Z, Wells A. 2002. Activation of m-calpain (calpain II) by epidermal growth factor is limited by protein kinase A phosphorylation of m-calpain. Molecular and Cellular Biology 22:2716–2727.
  • Simkó M. 2007. Cell type redox status is responsible for diverse electromagnetic field effects. Current Medicinal Chemistry 14: 1141–1152.
  • Tapp H, Al-Naggar IM, Yarmola EG, Harrison A, Shaw G, Edison AS, Bubb MR. 2005. MARCKS is a natively unfolded protein with an inaccessible actin-binding site: Evidence for long-range intramolecular interactions. Journal of Biological Chemistry 280: 9946–9956.
  • Temm-Grove CJ, Wert D, Thompson VF, Allen RE, Goll DE. 1999. Microinjection of calpastatin inhibits fusion in myoblasts. Experimental Cell Research 247:293–303.
  • Varani K, Gessi S, Merighi S, Iannotta V, Cattabriga E, Spisani S, Cadossi R, Borea PA. 2002. Effect of low frequency electromagnetic fields on A2A adenosine receptors in human neutrophils. British Journal of Pharmacology 136:57–66.
  • Vianale G, Reale M, Amerio P, Stefanachi M, Di Luzio S, Muraro R. 2008. Extremely low frequency electromagnetic field enhances human keratinocyte cell growth and decreases proinflammatory chemokine production. British Journal of Dermatology 158:1189–1196.
  • Wendt A, Thompson VF, Goll DE. 2004. Interaction of calpastatin with calpain: A review. Biological Chemistry 385:465–472.
  • Wolf FI, Torsello A, Tedesco B, Fasanella S, Boninsegna A, D’Ascenzo M, Grassi C, Azzena GB, Cittadini A. 2005. 50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: Possible involvement of redox mechanism. Biochimica et Biophysica Acta 1743:120–129.
  • Wu H, Ren K, Zhao W, Baojian GE, Peng S. 2005. Effect of electromagnetic fields on proliferation and differentiation of cultured mouse bone marrow mesenchymal stem cells. Journal of Huazhong University of Science and Technology[Medical Science] 25:185–187.
  • Zanou N, Iwata Y, Schakman O, Lebacq J, Wakabayashi S, Gailly P. 2009. Essential role of TRPV2 ion channel in the sensitivity of dystrophic muscle to eccentric contractions. FEBS Letters 583:3600–3604.
  • Zhou J, Yao G, Zhang J, Chang Z. 2002. CREB DNA binding activation by a 50-Hz magnetic field in HL60 cells is dependent on extra- and intracellular Ca(2+) but not PKA, PKC, ERK, or p38 MAPK. Biochemical and Biophysical Research Communications 296:1013–1018.
  • Zwirska-Korczala K, Jochem J, Adamczyk-Sowa M, Sowa P, Polaniak R, Birkner E, Latocha M, Pilc K, Suchanek R. 2005. Effect of extremely low frequency of electromagnetic fields on cell proliferation, antioxidative enzyme activities and lipid peroxidation in 3T3-L1 preadipocytes – an in vitro study. Journal of Physiology and Pharmacology 6:101–108.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.