143
Views
11
CrossRef citations to date
0
Altmetric
ALTERNATING MAGNETIC FIELD EFFECTS IN DROSOPHILA

Extremely low frequency magnetic field (50 Hz, 0.5 mT) modifies fitness components and locomotor activity of Drosophila subobscura

, , , &
Pages 337-343 | Received 18 Nov 2013, Accepted 22 Jan 2014, Published online: 19 Mar 2014

References

  • Abrams JK, Johnson PL, Hollis JH, Lowry CA. 2004. Anatomic and functional topography of the dorsal raphe nucleus. Ann NY Acad Sci 1018:46–57.
  • Adey WR, Lawrence AF. 1984. Nonlinear electrodynamics in biological systems. New York: Plenum Press. pp 3–22.
  • Bainton RJ, Tsai LT, Singh CM, Moore MS, Neckameyer WS. 2000. Dopamine modulates acute responses to cocaine, nicotine and ethanol in Drosophila. Curr Biol 10:187–194.
  • Balcavage WX, Alvager T, Swez J, Goff CW, Fox MT, Abdullyava S, King MW. 1996. A mechanism for action of extremely low frequency electromagnetic fields on biological systems. Biochem Biophys Res Commun 222:374–378.
  • Berg H. 1993. Electrostimulation of cell metabolism by low frequency electric and electromagnetic fields. Bioelectrochem Bioenerget 31:1–25.
  • Blanchard JP, Blackman CF. 1994. Clarification and application of an ion parametric resonance model for magnetic field interactions with biological systems. Bioelectromagnetics 15:217–238.
  • Chiabrera A, Bianco B, Kaufman JJ, Pilla AA. 1991. Quantum dynamics of ions in molecular creviers under electromagnetic exposure. In: Brighton CT, Pollack SR, editors. Electromagnetics in medicine and biology. San Francisco, CA: San Francisco Press. pp 21–26.
  • Colas J, Launay J, Maroteaux L. 1999. Maternal and zygotic control of serotonin biosynthesis are both necessary for Drosophila germband extension. Mechan Develop 87:67–76.
  • De Maio A. 1999. Heat shock proteins: Facts, thoughts, and dreams. Shock (Augusta, Ga.) 11:1–12.
  • Dimitrijević D, Janać B, Anđelković M, Savić T. 2013. Spontaneous locomotor activity of Drosophila subobscura under controlled laboratory conditions. Arch Biologic Sci Belgrade 65:977–987.
  • Domjan M. 2005. Pavlovian conditioning: A functional perspective. Ann Rev Psychol 56:179–206.
  • Foe VE. 1998. Mitotic domains reveal early commitment of cells in Drosophila embryos. Development 107:1–22.
  • Frahm J, Mattsson MO, Simkó M. 2010. Exposure to ELF magnetic fields modulate redox related protein expression in mouse macrophages. Toxicol Lett 192:330–336.
  • Friggi-Grelin F, Coulom H, Meller M, Gomez D, Hirsh J. 2003. Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase. J Neurobiol 54:618–627.
  • Gandhi OP, Kang G, Wu D, Lazzi G. 2001. Currents induced in anatomic models of the human for uniform and nonuniform power frequency magnetic fields. Bioelectromagnetics 22:112–121.
  • Garip AI, Akan Z. 2010. Effect of ELF-EMF on number of apoptotic cells; correlation with reactive oxygen species and HSP. Acta Biologica Hungarica 61:158–167.
  • Gaspar P, Cases O, Maroteaux L. 2003. The developmental role of serotonin: News from mouse molecular genetics. Nature Rev Neurosci 4:1002–1012.
  • Gauger JR. 1985. Household Appliance Magnetic Field Survey. IEEE Transactions on Power Apparatus and Systems Vol. PAS 104: 2436–2444.
  • Gonet B, Kosik-Bogacka DI, Kuźna-Grygiel W. 2009. Effects of extremely low-frequency magnetic fields on the oviposition of Drosophila melanogaster over three generations. Bioelectromagnetics 30:687–689.
  • Goodman R, Blank M. 1998. Magnetic field stress induces expression of hsp70. Cell Stress Chap 3:79–88.
  • Goodman R, Wei L-X, Xu J-C, Henderson A. 1989. Exposure of human cells to low-frequency electromagnetic fields results in quantitative changes in transcripts. Biochim Biophys Acta 1009:216–220.
  • Goodman R, Weisbrot D, Uluc A, Henderson A. 1992. Transcription in Drosophila melanogaster salivary gland cells is altered following exposure to low-frequency electromagnetic fields: Analysis of chromosome 3R. Bioelectromagnetics 13:111–118.
  • Graham JH, Fletcher D, Tigue J, McDonald M. 2000. Growth and developmental stability of Drosophila melanogaster in low frequency magnetic fields. Bioelectromagnetics 21:465–472.
  • Grahn RE, Will MJ, Hammack SE, Maswood S, McQueen MB, Watkins LR, Maier SF. 1999. Activation of serotonin-immunoreactive cells in the dorsal raphe nucleus in rats exposed to an uncontrollable stressor. Brain Res 826:35–43.
  • Heym J, Trulson ME, Jacobs BL. 1982. Raphe unit activity in freely moving cats: Effects of phasic auditory and visual stimuli. Brain Res 232:29–39.
  • Inoue T, Tsuchiya K, Koyama T. 1994. Regional changes in dopamine and serotonin activation with various intensity of physical and psychological stress in the rat brain. Pharmacol Biochem Behav 49:911–920.
  • Ivancsits S, Diem E, Jahn O, Rüdiger HW. 2003. Intermittent extremely low frequency electromagnetic fields cause DNA damage in a dose-dependent way. Int Arch Occupat Environ Health 76:431–436.
  • Jacobs BL, Fornal CA. 1999. Activity of serotonergic neurons in behaving animals. Neuropsychopharmacology 21:S9–15.
  • Janać B, Pešić V, Jelenković A, Vorobyov V, Prolić Z. 2005. Different effects of chronic exposure to ELF magnetic field on spontaneous and amphetamine-induced locomotor and stereotypic activities in rats. Brain Res Bull 67:498–503.
  • Janać B, Tovilović G, Tomić M, Prolić Z, Radenović L. 2009. Effect of continuous exposure to alternating magnetic field (50 Hz, 0.5 mT) on serotonin and dopamine receptors activity in rat brain. Gen Physiol Biophys 28:41–46.
  • Jenrow KA, Smith CH, Liboff AR. 1995. Weak extremely-low-frequency magnetic fields and regeneration in the planarian Dugesia tigrina. Bioelectromagnetics 16:106–112.
  • Jensen D, Overgaard J, Sørensen JG. 2007. The influence of developmental stage on cold shock resistance and ability to cold-harden in Drosophila melanogaster. J Insect Physiol 53:179–186.
  • Kataev AA, Alexandrov AA, Tikhonova LI, Berestovsky GN. 1993. Frequency-dependent electromagnetic millimeter-wave effects on ionic currents in the cell membrane of Nitellopsis: Non-thermal action. Biophysics 38:445–460.
  • Koana T, Okada MO, Takashima Y, Ikehata M, Miyakoshi J. 2001. Involvement of eddy currents in the mutagenicity of ELF magnetic fields. Mutat Res 476:55–62.
  • Koval TM, Hart RW, Myser WC, Hink WF. 1977. A comparison of survival and repair of UV-induces DNA damage in cultured insect versus mammalian cells. Genetics 87:513–518.
  • Koval TM, Hart RW, Myser WC, Hink WF. 1979. DNA single-strand break repair in cultured insects and mammalian cells after x-irradiation. Int J Radiat Biol Rel Stud Phys Chem Med 35:183–188.
  • Koval TM, Kazmar ER. 1988. DNA double-strand break repair in eukaryotic cell lines having radically different radio sensitivities. Radiat Res 113:268–277.
  • Krebs RA, Loeschcke V. 1994. Response to environmental change: Genetic variation and fitness in Drosophila buzzatii following temperature stress. EXS 68:309–321.
  • Krebs RA, Loeschcke V. 1996. Acclimation and selection for increased resistance to thermal stress in Drosophila buzzatii. Genetics 142: 471–479.
  • Lange S, Richard D, Viergutz T, Kriehuber R, Weiss DG, Simkó M. 2002. Alterations in the cell cycle and in the protein level of cyclin D1, p21CIP1, and p16INK4a after exposure to 50 Hz MF in human cells. Radiat Environ Biophys 41:131–137.
  • Lednev VV. 1993. Possible mechanism for the effect of weak magnetic fields on biological systems: Correction of the basic expression and its consequences. In: Blank M, editor. Electricity and magnetism in biology and medicine. San Francisco, CA: San Francisco Press, Inc. pp 550–552.
  • Lefkowitz RJ, Whalen EJ. 2004. Beta-arrestins: Traffic cops of cell signaling. Cur Opin Cell Biol 16:162–168.
  • Leonardo ED, Hen R. 2006. Genetics of affective and anxiety disorders. Ann Rev Psychol 57:117–137.
  • Li SH, Chow KC. 2001. Magnetic field exposure induces DNA degradation. Biochem Biophys Res Communic 280:1385–1388.
  • Liburdy RP. 1992. Calcium signaling in lymphocytes and ELF fields; Evidence for an electric field metric and a site of interaction involving the calcium ion channel. FEBS Lett 301:53–59.
  • Lindstrom E, Lindstrom P, Berglund A, Lundgren E, Mild KH. 1995. Intracellular calcium oscillations in a T-cell line after exposure to extremely low-frequency magnetic fields with variable frequencies and flux densities. Bioelectromagnetics 16:41–47.
  • Lindstrom E, Lindstrom P, Berglund A, Mild KH, Lundgren E. 1993. Intracellular calcium oscillations induced in a T-cell line by a weak 50 Hz magnetic field. J Cell Physiol 156:395–398.
  • Liu L, Davis RL, Roman G. 2007. Exploratory activity in Drosophila requires the kurtz nonvisual arrestin. Genetics 175: 1197–1212.
  • Mannerling AC, Simkó M, Mild KH, Mattsson MO. 2010. Effects of 50-Hz magnetic field exposure on superoxide radical anion formation and HSP70 induction in human K562 cells. Radiat Environ Biophys 49:731–741.
  • Mariucci G, Villarini M, Moretti M, Taha E, Conte C, Minelli A, Aristei C, Ambrosini MV. 2010. Brain DNA damage and 70-kDa heat shock protein expression in CD1 mice exposed to extremely low frequency magnetic fields. Int J Radiat Biol 86: 701–710.
  • Mathie A, Kennard LE, Veale EL. 2003. Neuronal ion channels and their sensitivity to extremely low frequency weak electric field effects. Radiat Protect Dosim 106:311–316.
  • Mattsson MO, Simkó M. 2012. Is there a relation between extremely low frequency magnetic field exposure, inflammation and neurodegenerative diseases? A review of in vivo and in vitro experimental evidence. Toxicology 301:1–12.
  • Mayer PJ, Baker GT. 1984. Developmental time and adult longevity in two strains of Drosophila melanogaster in a constant low-stress environment. Mechan Ageing Develop 26:283–298.
  • Mayr E. 1974. Behavior programs and evolutionary strategies. Am Scientist 62:650–659.
  • Mirabolghasemi G, Azarnia M. 2002. Developmental changes in Drosophila melanogaster following exposure to alternating electromagnetic fields. Bioelectromagnetics 23:416–420.
  • Neumann E. 2000. Digression on chemical electromagnetic field effects in membrane signal transduction – cooperativity paradigm of the acetylcholine receptor. Bioelectrochemistry 52:43–49.
  • Nikolić LM, Rokić MB, Todorović NV, Kartelija GS, Nedeljković MS, Zakrzewska JS. 2010. Effect of alternating magnetic field on phosphate metabolism in the nervous system of Helix pomatia. Biolog Res 43:243–250.
  • Niven JE, Vähäsöyrinki M, Juusola M. 2003. Shaker K(+)-channels are predicted to reduce the metabolic cost of neural information in Drosophila photoreceptors. Proc Royal Soc B: Biologic Sci 270(Suppl. 1):S58–61.
  • Osborne RH. 1996. Insect neurotransmission: Neurotransmitters and their receptors. Pharmacol Therapeut 69:117–142.
  • Panagopoulos DJ, Karabarbounis A, Lioliousis C. 2013. ELF alternating magnetic field decreases reproduction by DNA damage induction. Cell Biochem Biophys 67:703–716.
  • Portas CM, Bjorvatn B, Ursin R. 2000. Serotonin and the sleep/wake cycle: Special emphasis on microdialysis studies. Progress Neurobiol 60:13–35.
  • Poulson DF. 1950. Histogenesis, organogenesis and differentiation in the embryo of Drosophila melanogaster. In: Demerec M, editor. Biology of Drosophila. New York: Wiley and Son. pp 168–270.
  • Prasad KN. 1995. Handbook of Radiobiology, 2nd ed. Boca Raton, FL: CRC Press.
  • Prolić Z, Jovanović R, Konjević G, Janać B. 2003. Behavioral differences of the insect Morimus funereus (Coleoptera, Cerambycidae) exposed to an extremely low frequency magnetic field. Electromag Biol Med 22:63–73.
  • Pum M, Huston JP, De Souza Silva MA, Muller CP. 2008. Visual sensory-motor gating by serotonin activation in the medial prefrontal and occipital, but not in the rhinal, cortices in rats. Neuroscience 153:361–372.
  • Ramírez E, Monteagudo JL, García-Gracia M, Delgado JM. 1983. Oviposition and development of Drosophila modified by magnetic fields. Bioelectromagnetics 4:315–326.
  • Rauš S, Selaković V, Manojlović-Stojanoski M, Radenović L, Prolić Z, Janać B. 2013. Response of hippocampal neurons and glial cells to alternating magnetic field in gerbils submitted to global cerebral ischemia. Neurotox Res 23:79–91.
  • Rauš S, Selaković V, Radenović L, Prolić Z, Janać B. 2012. Extremely low frequency magnetic field induced changes in motor behaviour of gerbils submitted to global cerebral ischemia. Behav Brain Res 228:241–246.
  • Rollwitz J, Lupke M, Simkó M. 2004. Fifty-hertz magnetic fields induce free radical formation in mouse bone marrow-derived promonocytes and macrophages. Biochimic Biophys Acta 1674:231–238.
  • Roman G, He J, Davis RL. 2000. kurtz, a novel nonvisual arrestin, is an essential neural gene in Drosophila. Genetics 155:1281–1295.
  • Santini MT, Rainaldi G, Indovina PL. 2009. Cellular effects of extremely low frequency (ELF) electromagnetic fields. Int J Radiat Biol 85: 294–313.
  • Seligman SA. 1970. Dangers of decimals. Lancet 1(7641):306.
  • Sheĭman IM, Kreshchenko ND. 2009. Influence of weak electromagnetic field on different forms of behavior in grain beetle Tenebrio molitor. Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova 59:488–494.
  • Sheĭman IM, Kreshchenko ND. 2010. Effects of weak electromagnetic irradiation on various types of behavior in the mealworm Tenebrio molitor. Neurosci Behav Physiol 40:863–868.
  • Sun W, Gan Y, Fu Y, Lu D, Chiang H. 2008. An incoherent magnetic field inhibited EGF receptor clustering and phosphorylation induced by a 50-Hz magnetic field in cultured FL cells. Cellular Physiol Biochem 22:507–514.
  • Thomas AW, Drosta DJ, Prato FS. 2001. Human subjects exposed to a specific pulsed (200 μT) magnetic field: Effects on normal standing balance. Neurosci Lett 297:121–124.
  • Todorović D, Marković T, Prolić Z, Mihajlović S, Rauš S, Nikolić L, Janać B. 2013. The influence of static magnetic field (50 mT) on development and motor behaviour of Tenebrio (Insecta, Coleoptera). Int J Radiat Biol 89:44–50.
  • Tsutsayeva AA, Sevryukova LG. 2001. Effect of cold exposure on survival and stress protein expression of Drosophila melanogaster at different development stages. Cryo Lett 22:145–150.
  • Walleczek J, Budinger TF. 1992. Pulsed magnetic field effects on calcium signaling in lymphocytes: Dependence on cell status and field intensity. FEBS Lett 314:351–355.
  • Waterhouse B, Devilbliss D, Seiple S, Markowitz R. 2004. Sensorimotorrelated discharge of simultaneously recorded, single neurons in the dorsal raphe nucleus of the awake, unrestrained rat. Brain Res 1000:183–191.
  • Zar JH. 1999. Biostatistical analysis, 4th ed. Upper Saddle River, NJ: Prentice Hall, 662 pp., plus appendices.
  • Zhang X, Liu X, Pan L, Lee I. 2010. Magnetic fields at extremely low-frequency (50 Hz, 0.8 mT) can induce the uptake of intracellular calcium levels in osteoblasts. Biochem Biophys Res Communic 396:662–666.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.