517
Views
29
CrossRef citations to date
0
Altmetric
Research Article

Effect of extremely low frequency electromagnetic fields on bacterial membrane

, , &
Pages 42-49 | Received 24 Apr 2015, Accepted 23 Sep 2015, Published online: 30 Oct 2015

References

  • Ahmed I, Istivan T, Cosic I, Pirogova E. 2013. Evaluation of the effects of extremely low frequency (ELF) pulsed electromagnetic fields (PEMF) on survival of the bacterium Staphylococcus aureus. EPJ Nonlinear Biomed Phys 1:5.
  • Alipov YD, Belyaev IY. 1996. Difference in frequency spectrum of extremely low frequency effects on the genome conformational state of AB 1157 and EMG2 E. coli cells. Bioelectromagnetics 17:384–387.
  • Belyaev IY, Alipov YD. 2001. Frequency dependent effects of ELF magnetic field on chromatin conformation in Escherichia coli cells and human lymphocytes. Biochim Biophys Acta 1526:269–276.
  • Belyaev IY, Alipov YD, Matronchik AY. 1998. Cell density dependent response of E. coli cells to weak ELF magnetic fields. Bioelectromagnetics 19:300–309.
  • Belyaev IY, Alipov YD, Harms-Ringdahl M. 1999. Effects of weak ELF on E. coli cells and human lymphocytees: role of genetic, physiological and physical parameters. In: Bersani F, editor. Electricity and magnetism in biology and medicine. New York: Kluwer Academic, Plenum Publishers. pp 481–484.
  • Binhi VN. 2002. Magnetobiology: Underlying physical problems. San Diego: Academic Press.
  • Binhi VN, Rubin AB. 2007. Magnetobiology: the kT paradox and possible solutions. Electromagn Biol Med 26:45–62.
  • Bot CT, Prodan C. 2010. Quantifying the membrane potential during E. coli growth stages. Biophys Chem 146: 133–137.
  • Brocklehurst B, Mclauchlan KA. 1996. Free radical mechanism for the effects of environmental electromagnetic fields on biological systems. Int J Radiat Biol 69:3–24.
  • Castañeda-García A, Do TT, Blázquez J. 2011.The K1 uptake regulator Trka controls membrane potential, Ph homeostasis and multidrug susceptibility in Mycobacterium smegmatis. J Antimicrob Chemother 66:1489–1498.
  • Cellini L, Grande R, Di Campli E, Di Bartolomeo S, Di Giulio M, Robuffo I, Trubiani O, Mariggio MA. 2008. Bacterial response to the exposure of 50 Hz electromagnetic fields. Bioelectromagnetics 29:302–311.
  • Chilton P, Isaacs NS, Manias P, Mackey BM. 2001. Biosynthetic requirements for the repair of membrane damage in pressure-treated Escherichia coli. Int J Food Microbiol 71:101–104.
  • D’Angelo C, Costantini E, Kamal MA, Reale M. 2015. Experimental model for ELF-EMF exposure: concern for human health. Saudi J Biolog Sci 22:75–84.
  • Del Re B, Bersani F, Mesirca P, Giorgi G. 2006. Synthesis of DnaK and GroEL in Escherichia coli cells exposed to different magnetic field signals. Bioelectrochemistry 69:99–103.
  • Del Re B, Marcantonio P, Bersani F, Giorgi G. 2009. Extremely low frequency magnetic field exposure affects DnaK and GroEL expression in E. coli cells with impaired heat shock response. Gen Physiol Biophys 28:420–424.
  • Dimroth P, Kaim G, Matthey U. 2000. Crucial role of the membrane potential for ATP synthesis by F1F0 ATP synthases. J Exp Biol 203:51–59.
  • Ehrenstein G. 2001. Surface charge. In: De Felice LJ, editor. Biophysics textbook on-line. Biophysical Society, Bethesda, Maryland. Available at: http:/www.biophysics.org/btol/
  • Engström S. 2004. Physical mechanisms of non-thermal extremely low frequency magnetic field effects. Radiosci Bull 311:95–106.
  • Fadel MA, Mohamed SA, Abdelbacki AM, El-Sharkawy AH. 2014. Inhibition of Salmonella typhi growth using extremely low frequency electromagnetic (ELF-EM) waves at resonance frequency. J Appl Microbiol 117:358–365.
  • Farina M, Mariggio MA, Pietrangelo T, Stupak JJ, Morini A, Fano G. 2010. ELF-EMFs induced effects on cell lines: controlling ELF generation in laboratory. Prog Electromag Res B 24:131–153.
  • Garcia D, Manas P, Gomez N, Raso J, Pagan R. 2006. Biosynthetic requirements for the repair of sub lethal membrane damage in Escherichia coli cells after pulsed electric fields. J Appl Microbiol 100:428–435.
  • Gu S, Lu G, Wu Y, Li S, Zhao Y, Li K. 2012. A study of the interaction between ELF-EMF and bacteria. In: Hu W, editor. Advances in electric and electronics. Berlin: Springer-Verlag. pp 243–254.
  • Hazlewood CF, Markov M. 2009. Trigger points and systemic effect for EMF therapy. Environmentalist 29:232–239.
  • Hegde A, Bhat GK, Mallya S. 2008. Effect of exposure to hydrogen peroxide on the virulence of Escherichia coli. Indian J Med Microbiol 26:8–25.
  • Huwiler SG, Beyer C, Frochlich J, Hennecke H, Egli T, Schurmann D, Rehrauer H, Fischer HM. 2012. Genome-wide transcription analysis of Escherichia coli in response to extremely low-frequency magnetic fields. Bioelectromagnetics 33:488–496.
  • Ibraheim MH, El-Din Darwish DB. 2013. 50 Hz Frequency magnetic field effects on Pseudomonas aeruginosa and Bacillus subtilis bacteria. IOSR J Appl Phys 5:2278–4861.
  • Ikehara T, Yamaguchi H, Miyamoto H. 1998. Effects of electromagnetic fields on membrane ion transport of cultured cells. J Med Invest 45:47–56.
  • Inhan Garip A, Aksu B, Akan Z, Akakın D, Ozaydın AN, San T. 2011. Effects of extremely low frequency electromagnetic fields on growth rate and morphology of bacteria. Int J Radiat Biol 87:1155–1161.
  • International Commission on Non-Ionising Radiation Protection (ICNIRP). 2003. Exposure to static and low frequency electromagnetic fields, biological effects and health consequences (0–100 kHz). In: Bernhardt JH, Matthes R, McKinlay A, Vecchia P, Veyret B, editors. Oberschleissheim, Germany: ICNIRP.
  • Iorio R, Delle Monache S, Bennato F, Di Bartolomeo C, Scrimaglio R, Cinque B, Colonna RC. 2011. Involvement of mitochondrial activity in mediating ELF-EMF stimulatory effect on human sperm motility. Bioelectromagnetics 32:15–27.
  • Kenny JG, Ward D, Josefsson E, Jonsson IM, Hinds J, Rees HH, Lindsay JA, Tarkowski A, Horsburgh M. 2009. The Staphylococcus aureus response to unsaturated long chain free fatty acids: Survival mechanisms and virulence implications. PLoS One 4:4344.
  • Krasowska A, Sigler K. 2014. How microorganisms use hydrophobicity and what does this mean for human needs? Front Cell Infect Microbiol 4:112.
  • Lai HC, Singh NP. 2010. Medical applications of electromagnetic fields. IOP Conf Series: Earth Environ Sci 10:012006.
  • Lei C, Berg H. 1998. Electromagnetic window effects on proliferation rate of Corynebacterium glutamicum. Bioelectrochem Bioenerg 45:261–265.
  • Madkan A, Blank M, Elson E, Chou KC, Geddis MS, Goodman R. 2009. Steps to the clinic with ELF-EMF. Natural Sci 1:157–165.
  • Mangoni M, Papo N, Barra D, Simmaco M, Bozzi A, Di Giulio A, Rinaldi AC. 2004. Effects of the antimicrobial peptide temporin l on cell morphology, membrane permeability and viability of Escherichia coli. Biochem J 380:859–865.
  • Markov MS. 2006. Thermal vs. non-thermal mechanisms of interactions between electromagnetic fields and biological systems. In: Ayrapetyan S, Markov M, editors. Bioelectromagnetics: Current concepts. The Netherlands: Springer. pp 1–15.
  • Marron MT, Goodman EM, Sharpe PT, Greenebaum B. 1988. Low frequency electric and magnetic fields have different effects on the cell surface. FEBS Lett 230:13–16.
  • Martirosyan V. 2012.The effects of physical factors on bacterial cell proliferation. J Low Freq Noise Vibr Active Contr 31:247–256.
  • Mattsson M-O, Simko M 2014. Grouping of experimental conditions as an approach to evaluate effects of extremely low-frequency magnetic fields on oxidative response in in vitro studies Front. Public Health 2:132. doi: 10.3389/fpubh.2014.00132
  • Mega-Tiber P, Aksu B, Inhan Garip A. 2008. The effect of ELF EMF on bacterial growth; correlation with ROS. 2nd International congress on cell membrane and oxidative stress. 25–28 June 2008. Isparta, Turkey. Cell Membrane Free Rad Res 2008 1:28–29.
  • Morabito C, Rovetta F, Bizzarri M, Mazzoleni G, Fanò G, Mariggiò MA. 2010. Modulation of redox status and calcium handling by extremely low frequency electromagnetic fields in c2c12 muscle cells: a real-time, single-cell approach. Free Radic Biol Med 48:579–589.
  • Obermeier A, Matl AD, Friess W, Stemberge A. 2009. Growth inhibition of Staphylococcus aureus induced by low-frequency electric and electromagnetic fields. Bioelectromagnetics 30:270–279.
  • Polk C. 1990. Electric fields and surface charges induced by ELF magnetic fields. Bioelectromagnetics 11:189–201.
  • Porter KG, Feig YS. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948.
  • Sadafi HA, Mehboodi ZH, Sardari D. 2006. A review of the mechanisms of interaction between the extremely low frequency electromagnetic fields and human biology. Progress in Electromagnetics Research Symposium. 26–29 March 2006. Cambridge, USA. pp 178–182.
  • Santini MT, Rainaldi G, Indovina PL. 2009. Cellular effects of extremely low frequency (ELF) electromagnetic fields. Int J Radiat Biol 85:294–313.
  • Santoro N, Lisi A, Pozzi D, Pasquali E, Serafino A, Grimaldi S. 1997. Effect of extremely low frequency (ELF) magnetic field exposure on morphological and biophysical properties of human lymphoid cell line (Raji). Biochim Biophys Acta 1357:281–290.
  • Segatore B, Setacci D, Bennato F, Cardigno R, Amicosante G, Iorio R. 2012. Evaluations of the effects of extremely low frequency electromagnetic fields on growth and antibiotic susceptibility of Escherichia coli and Pseudomonas aeruginosa. Int J Microbiol 2012:1–7.
  • Seidler E. 1991. The tetrazolium-formazan system: design and histochemistry. Prog Histochem Cytochem 24:1–86.
  • Simko M. 2004. Induction of cell activation processes by low frequency electromagnetic fields. Scientific World J 4:4–22.
  • Simko M. 2007. Cell type specific redox status is responsible for diverse electromagnetic field effects. Curr Medicinal Chem 14:1141–1152.
  • Smith OM, Goodman EM, Greenebaum B, Tipnis P. 1991. An increase in the negative surface charge of u937 cells exposed to a pulsed magnetic field. Bioelectromagnetics 12:197–202.
  • Spindler EC, Hale JDF, Giddings TH, Hancock REW, Gill RT. 2011. Deciphering the mode of action of the synthetic antimicrobial peptide Bac8c. Antimicrob Agents Chemoter 55:1706–1716.
  • Strahl H, Hamoen LW. 2010. Membrane potential is important for bacterial cell division. PNAS 107:12281–12286.
  • Suzuki H, Wang Z, Yamakoshi M, Nozawa T. 2003. Probing the transmembrane potential of bacterial cells by voltage-sensitive dyes. Anal Sci 19:1239–1242.
  • Tenforde TS. 1996. Biological interactions of extremely low frequency electromagnetic fields. In: Ueno S, editor. Biological effect of magnetic and electromagnetic fields. New York: Plenum Press.
  • Tonini R, Baroni MD, Masala E, Micheletti M, Ferroni A, Mazzanti M. 2001. Calcium protects differentiating neuroblastoma cells during 50 Hz electromagnetic radiation. Biophys J 81:2580–2589.
  • Valberg PA, Kavet R, Rafferty CN. 1997. Can low-level 50/60 Hz electric and magnetic fields cause biological effects? Radiat Res 148:2–21.
  • Vanhauteghem D, Janssens GPJ, Lauwaerts A, Sys S, Boyen F. 2013. Exposure to the proton scavenger glycine under alkaline conditions induces Escherichia coli viability loss. PLoS One 8:e60328.
  • Volpe P, Cappelli G, Mariani F, Serafino A, Eremenko T. 2002. Macrophage sensitivity to static magnetic fields. In: Kostarakis P, editor. Biological effects of electromagnetic fields. Vol.1. Rhodes, Greece: Demokritos Publishers. pp 374–381.
  • Yakir-Blumkin MB, Loboda Y, Schächter L, Finberg JPM. 2014. Neuroprotective effect of weak static magnetic fields in primary neuronal cultures. Neuroscience 278:313–326.
  • Yalçın S, Erdem G. 2012. Biological effects of electromagnetic fields. Afr J Biotechnol 11:3933–3941.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.