254
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Strand breakage by decay of DNA-bound 124I provides a basis for combined PET imaging and Auger endoradiotherapy

, , , , , , , , , , , , & show all
Pages 686-697 | Received 10 Sep 2015, Accepted 17 Dec 2015, Published online: 23 Feb 2016

References

  • Adelstein SJ, Kassis AI. 1996. Strand breaks in plasmid DNA following positional changes of Auger-electron-emitting radionuclides. Acta Oncol. 35:797–801.
  • Adelstein SJ, Kassis AI, Baranowska-Kortylewicz J, van den Abbeele AD, Mariani G, Ito S. 1991. Potential for tumor therapy with iodine-125 labeled immunoglobulins. Int J Rad Appl Instrum B. 18:43–44.
  • Adelstein SJ, Kassis AI, Bodei L, Mariani G. 2003. Radiotoxicity of iodine-125 and other auger-electron-emitting radionuclides: Background to therapy. Cancer Biother Radiopharm. 18:301–316.
  • Balagurumoorthy P, Chen K, Bash RC, Adelstein SJ, Kassis AI. 2006. Mechanisms underlying production of double-strand breaks in plasmid DNA after decay of 125I-Hoechst. Radiat Res. 166:333–344.
  • Balagurumoorthy P, Wang K, Adelstein SJ, Kassis AI. 2008. DNA double-strand breaks induced by decay of (123)I-labeled Hoechst 33342: Role of DNA topology. Int J Radiat Biol. 84:976–983.
  • Balagurumoorthy P, Xu X, Wang K, Adelstein SJ, Kassis AI. 2012. Effect of distance between decaying (125)I and DNA on Auger-electron induced double-strand break yield. Int J Radiat Biol. 88:998–1008.
  • Bloomer WD, Adelstein SJ. 1977. 5-125I-iododeoxyuridine as prototype for radionuclide therapy with Auger emitters. Nature. 265:620–621.
  • Bloomer WD, McLaughlin WH, Weichselbaum RR, Tonnesen GL, Hellman S, Seitz DE, Hanson RN, Adelstein SJ, Rosner AL, Burstein NA, et al. 1980. Iodine-125-labelled tamoxifen is differentially cytoxic to cells containing oestrogen receptors. Int J Radiat Biol Relat Stud Phys Chem Med. 38:197–202.
  • Burki HJ, Roots R, Feinendegen LE, Bond VP. 1973. Inactivation of mammalian cells after disintegration of 3H or 125I in cell DNA at −196 °C. Int J Radiat Biol Relat Stud Phys Chem Med. 24:363–375.
  • Charlton DE, Booz J. 1981. A Monte Carlo treatment of the decay of 125I. Radiat Res. 87:10–23.
  • Cornelissen B, Waller A, Target C, Kersemans V, Smart S, Vallis KA. 2012. 111In-BnDTPA-F3: An Auger electron-emitting radiotherapeutic agent that targets nucleolin. EJNMMI Res. 2:9.
  • Fenton C, Perry CM. 2005. Gemtuzumab ozogamicin: A review of its use in acute myeloid leukaemia. Drugs. 65:2405–2427.
  • Gkouvatsos K, Papanikolaou G, Pantopoulos K. 2012. Regulation of iron transport and the role of transferrin. Biochim Biophys Acta. 1820:188–202.
  • Goldenberg DM. 2002. Targeted therapy of cancer with radiolabeled antibodies. J Nucl Med. 43:693–713.
  • Haefliger P, Agorastos N, Renard A, Giambonini-Brugnoli G, Marty C, Alberto R. 2005. Cell uptake and radiotoxicity studies of an nuclear localization signal peptide-intercalator conjugate labeled with [99mTc(CO)3]+. Bioconjug Chem. 16:582–587.
  • Howell RW. 1992. Radiation spectra for Auger-electron emitting radionuclides: Report No. 2 of AAPM Nuclear Medicine Task Group No. 6. Med Phys. 19:1371–1383.
  • Iimura H, Katakura j, Kitao K, Tamura T. 1997. Nuclear Data Sheets. 80:895.
  • Karagiannis TC, Lobachevsky PN, Leung BK, White JM, Martin RF. 2006. Receptor-mediated DNA-targeted photoimmunotherapy. Cancer Res. 66:10548–10552.
  • Karamychev VN, Reed MW, Neumann RD, Panyutin IG. 2000. Distribution of DNA strand breaks produced by iodine-123 and indium-111 in synthetic oligodeoxynucleotides. Acta Oncol. 39:687–692.
  • Kassis AI, Fayad F, Kinsey BM, Sastry KS, Adelstein SJ. 1989. Radiotoxicity of an 125I-labeled DNA intercalator in mammalian cells. Radiat Res. 118:283–294.
  • Kassis AI, Harapanhalli RS, Adelstein SJ. 1999. Strand breaks in plasmid DNA after positional changes of Auger electron-emitting iodine-125: Direct compared to indirect effects. Radiat Res. 152:530–538.
  • Katakura J. 2011. Nuclear Data Sheets for A = 125. Nucl Data Sheets. 112:495–705.
  • Katakura J, Wu ZD. 2008. Nuclear Data Sheets for A = 124. Nucl Data Sheets. 109:1655–1877.
  • Kotzerke J, Punzet R, Runge R, Ferl S, Oehme L, Wunderlich G, Freudenberg R. 2014. 99mTc-labeled HYNIC-DAPI causes plasmid DNA damage with high efficiency. PLoS One. 9:e104653.
  • Lee BQ, Kibédi T, Stuchbery AE, Robertson KA. 2012. Atomic radiations in the decay of medical radioisotopes: A physics perspective. Comput Math Methods Med. 2012:651475.
  • Lee BQ, Nikjoo H, Ekman J, Jonsson P, Stuchbery AE, Kibedi T 2016. A stochastic cascade model for Auger-electron emitting radionuclides. Int J Radiat Biol (current issue).
  • Lobachevsky PN, Karagiannis TC, Martin RF. 2004. Plasmid DNA breakage by decay of DNA-associated Auger electron emitters: Approaches to analysis of experimental data. Radiat Res. 162:84–95.
  • Lobachevsky PN, Martin RF. 2000a. Iodine-125 decay in a synthetic oligodeoxynucleotide. I. Fragment size distribution and evaluation of breakage probability. Radiat Res. 153:263–270.
  • Lobachevsky PN, Martin RF. 2000b. Iodine-125 decay in a synthetic oligodeoxynucleotide. II. The role of auger electron irradiation compared to charge neutralization in DNA breakage. Radiat Res. 153:271–278.
  • Lobachevsky PN, Martin RF. 2004a. An improved approach to the analysis of plasmid DNA breakage by decay of DNA-associated auger emitters. Int J Radiat Biol. 80:861–866.
  • Lobachevsky PN, Martin RF. 2004b. Plasmid DNA breakage by decay of DNA-associated auger emitters: Experiments with 123I/125I-iodoHoechst 33258. Int J Radiat Biol. 80:915–920.
  • Lobachevsky PN, Martin RF. 2005. DNA breakage by decay of Auger electron emitters: Experiments with 123I-iodoHoechst 33258 and plasmid DNA. Radiat Res. 164:766–773.
  • Lobachevsky PN, White J, Leung M, Skene C, White J, Martin RF. 2008. Plasmid breakage by (125)I-labelled DNA ligands: Effect of DNA-iodine atom distance on breakage efficiency. Int J Radiat Biol. 84:991–1000.
  • Makrigiorgos GM, Berman RM, Baranowska-Kortylewicz J, Bump E, Humm JL, Adelstein SJ, Kassis AI. 1992. DNA damage produced in V79 cells by DNA-incorporated iodine-123: A comparison with iodine-125. Radiat Res. 129:309–314.
  • Makrigiorgos GM, Kassis AI, Baranowska-Kortylewicz J, McElvany KD, Welch MJ, Sastry KS, Adelstein SJ. 1989. Radiotoxicity of 5-[123I]iodo-2′-deoxyuridine in V79 cells: A comparison with 5-[125I]iodo-2′-deoxyuridine. Radiat Res. 118:532–544.
  • Martin RF, Bradley TR, Hodgson GS. 1979. Cytotoxicity of an 125I-labeled DNA-binding compound that induces double-stranded DNA breaks. Cancer Res. 39:3244–3247.
  • Martin RF, Broadhurst S, Reum ME, Squire CJ, Clark GR, Lobachevsky PN, White JM, Clark C, Sy D, Spotheim-Maurizot M, et al. 2004. In vitro studies with methylproamine: A potent new radioprotector. Cancer Res. 64:1067–1070.
  • Martin RF, Haseltine WA. 1981. Range of radiochemical damage to DNA with decay of iodine-125. Science. 213:896–898.
  • Murray V, Martin RF. 1988. Sequence specificity of 125I-labelled Hoechst 33258 damage in six closely related DNA sequences. J Mol Biol. 203:63–73.
  • Panyutin IG, Neumann RD. 1996. Sequence-specific DNA breaks produced by triplex-directed decay of iodine-125. Acta Oncol. 35:817–823.
  • Pjura PE, Grzeskowiak K, Dickerson RE. 1987. Binding of Hoechst 33258 to the minor groove of B-DNA. J Mol Biol. 197:257–271.
  • Pomplun E, Terrissol M, Demonchy M. 1996. Modelling of initial events and chemical behaviour of species induced in DNA units by Auger electrons from 125I, 123I and carbon. Acta Oncol. 35:857–862.
  • Sahu SK, Kassis AI, Makrigiorgos GM, Baranowska-Kortylewicz J, Adelstein SJ. 1995. The effects of indium-111 decay on pBR322 DNA. Radiat Res. 141:193–198.
  • Salvat F, Fernández-Varea JM, Sempau J. PENELOPE-2008: A code system for Monte Carlo simulation of electron and photon transport. PENELOPE-2008 workshop and training course, 2008 Barcelona, Spain. OECD.
  • Schmidt A, Hotz G. 1973. The occurrence of double-strand breaks in coliphage T1-DNA by iodine-125 decay. Int J Radiat Biol. 24:307–313.
  • Sedelnikova OA, Panyutin IG, Thierry AR, Neumann RD. 1998. Radiotoxicity of iodine-125-labeled oligodeoxyribonucleotides in mammalian cells. J Nucl Med. 39:1412–1418.
  • Soda R, Tavassoli M. 1984. Liver endothelium and not hepatocytes or Kupffer cells have transferrin receptors. Blood. 63:270–276.
  • Spink N, Brown DG, Skelly JV, Neidle S. 1994. Sequence-dependent effects in drug-DNA interaction: The crystal structure of Hoechst 33258 bound to the d(CGCAAATTTGCG)2 duplex. Nucleic Acids Res. 22:1607–1612.
  • Squire CJ, Baker LJ, Clark GR, Martin RF, White J. 2000. Structures of m-iodo Hoechst-DNA complexes in crystals with reduced solvent content: Implications for minor groove binder drug design. Nucleic Acids Res. 28:1252–1258.
  • Sundell-Bergman S, Johanson KJ. 1982. Impaired repair capacity of DNA strand breaks induced by 125I-triiodothyronine in Chinese hamster cells. Biochem Biophys Res Commun. 106:546–552.
  • Tandara L, Salamunic I. 2012. Iron metabolism: Current facts and future directions. Biochem Med (Zagreb). 22:311–328.
  • Tavares AA, Tavares JM. 2010. (99m)Tc Auger electrons for targeted tumour therapy: A review. Int J Radiat Biol. 86:261–270.
  • Tavassoli M, Kishimoto T, Soda R, Kataoka M, Harjes K. 1986. Liver endothelium mediates the uptake of iron-transferrin complex by hepatocytes. Exp Cell Res. 165:369–379.
  • Vogel W, Bomford A, Young S, Williams R. 1987. Heterogeneous distribution of transferrin receptors on parenchymal and nonparenchymal liver cells: Biochemical and morphological evidence. Blood. 69:264–270.
  • Walicka MA, Ding Y, Roy AM, Harapanhalli RS, Adelstein SJ, Kassis AI. 1999. Cytotoxicity of [125I]iodoHoechst 33342: Contribution of scavengeable effects. Int J Radiat Biol. 75:1579–1587.
  • Welt S, Scott AM, Divgi CR, Kemeny NE, Finn RD, Daghighian F, Germain JS, Richards EC, Larson SM, Old LJ. 1996. Phase I/II study of iodine 125-labeled monoclonal antibody A33 in patients with advanced colon cancer. J Clin Oncol. 14:1787–1797.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.