673
Views
27
CrossRef citations to date
0
Altmetric
Research Article

Transfer of useful variability of high grain iron and zinc from Aegilops kotschyi into wheat through seed irradiation approach

, , , , , , , & show all
Pages 132-139 | Received 11 Sep 2015, Accepted 03 Dec 2015, Published online: 17 Feb 2016

References

  • Abbaspour N, Hurrell R, Kelishadi R. 2014. Review on iron and its importance for human health. J Res Med Sci. 19:164–174.
  • Adamski NM, Bush MS, Simmonds J, Turner AS, Mugford SG, Jones A, Findlay K, Pedentchouk N, von Wettstein-Knowles P, Uauy C. 2013. The inhibitor of wax 1 locus (Iw1) prevents formation of β- and OH-β-diketones in wheat cuticular waxes and maps to a sub-cM interval on chromosome arm 2BS. Plant J. 74:989–1002.
  • Borrill P, Connorton JM, Balk J, Miller AJ, Sanders D, Uauy C. 2014. Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops. Front Plant Sci. 5:1–8.
  • Brenchley R, Spannagl M, Pfeifer M, Barker GLA, Amore RD, Allen AM, Mckenzie N, Kramer M, Bolser D, Kay S, et al. 2012. Analysis of the bread wheat genome using whole genome shotgun sequencing. Nature. 491:705–710.
  • Cakmak I, Ozkan H, Braun HJ, Welch RM, Romheld V. 2000. Zinc and iron concentrations in seeds of wild, primitive, and modern wheats. Food Nutr Bull. 21:401–403.
  • Calderini DF, Ortiz-Monasterio I. 2003. Grain position affects grain macronutrient and micronutrient concentrations in wheat. Crop Sci. 43:141–151.
  • Chen P, You C, Hu Y, Chen S, Zhou B, Cao A, Wang X. 2013. Radiation-induced translocations with reduced Haynaldia villosa chromatin at the Pm21 locus for powdery mildew resistance in wheat. Mol Breed. 31:477–484.
  • Dvořák J, Knott DR. 1977. Homoeologous chromatin exchange in a radiation-induced gene transfer. Can J Genet Cytol. 19:125–131.
  • Friebe B, Hatchett JH, Gill BS, Mukai Y, Sebesta EE. 1991. Transfer of Hessian fly resistance from rye to wheat via radiation-induced terminal and intercalary chromosomal translocations. Theor Appl Genet. 83:33–40.
  • Friebe B, Jiang J, Gill BS, Dyck PL. 1993. Radiation-induced nonhomoeologous wheat- Agropyron intermedium chromosomal translocations conferring resistence to leaf rust. Theor Appl Genet. 86:141–149.
  • Goldringer I, Brabant P, Gallais A. 1997. Estimation of additive and epistatic genetic variances for agronomic traits in a population of doubled-haploid lines of wheat. Heredity. 79:60–71.
  • Hossain KG, Riera-Lizarazu O, Kalavacharla V, Vales MI, Maan SS, Kianian SF. 2004. Radiation hybrid mapping of the species cytoplasm-specific (scsae) gene in wheat. Genetics. 168:415–423.
  • International Wheat Genome Sequencing Consortium (IWGSC). 2014. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 345:1251788.
  • Jorhem L, Engman J. 2000. Determination of lead, cadmium, zinc, copper, and iron in foods by atomic absorption spectrometry after microwave digestion: NMKL Collaborative Study. J AOAC Int. 83:1189–1203.
  • Joshi K, Crossa J, Arun B, Chand R, Trethowan R, Vargas M, Ortiz-Monasterio I. 2010. Genotype × environment interaction for zinc and iron concentration of wheat grain in eastern Gangetic plains of India. F Crop Res. 116:268–277.
  • Kalavacharla V, Hossain K, Gu Y, Riera-Lizarazu O, Vales MI, Bhamidimarri S, Gonzalez-Hernandez JL, Maan SS, Kianian SF. 2006. High-resolution radiation hybrid map of wheat chromosome 1D. Genetics. 173:1089–1099.
  • Kayodé AP, Linnemann AR, Hounhouigan JD, Nout MJR, Van Boekel MAJS. 2006. Genetic and environmental impact on iron, zinc, and phytate in food sorghum grown in Benin. J Agric Food Chem. 54:256–262.
  • Lukaszewski AJ, Lapinski B, Rybka K. 2005. Limitations of in situ hybridization with total genomic DNA in routine screening for alien introgressions in wheat. Cytogenet Genome Res. 109:373–377.
  • Mukai Y, Friebe B, Hatchett JH, Yamamoto M, Gill BS. 1993. Molecular cytogenetic analysis of radiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly. Chromosoma. 102:88–95.
  • Murray MG, Thompson WF. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8:4321–4325.
  • Neelam K, Rawat N, Tiwari V, Kumar S, Chhuneja P, Singh K, Randhawa G, Dhaliwal H. 2011. Introgression of group 4 and 7 chromosomes of Ae. peregrina in wheat enhances grain iron and zinc density. Mol Breed. 28:623–634.
  • Palmer CM, Guerinot M Lou. 2009. Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol. 5:333–340.
  • Pestsova E, Ganal MW, Röder MS. 2000. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome. 43:689–697.
  • Qi L, Friebe B, Zhang P, Gill BS. 2007. Homoeologous recombination, chromosome engineering and crop improvement. Chromosom Res. 15:3–19.
  • Rawat N, Neelam K, Tiwari VK, Dhaliwal HS. 2013. Biofortification of cereals to overcome hidden hunger. Plant Breed. 132:437–445.
  • Rawat N, Tiwari V, Singh N, Randhawa G, Singh K, Chhuneja P, Dhaliwal HS. 2009. Evaluation and utilization of Aegilops and wild Triticum species for enhancing iron and zinc content in wheat. Genet Resour Crop Evol. 56:53–64.
  • Roder MS, Korzun V, Wendehake K, Plaschke J, Leroy P, Ganal MW. 1998. A microsatellite map of wheat. Genetics. 1998:2007–2023.
  • Roohani N, Hurrell R, Kelishadi R, Schulin R. 2013. Zinc and its importance for human health: An integrative review. J Res Med Sci. 18:144–157.
  • Snape JW, Parker BB, Simpson E, Ainsworth CC, Payne PI, Law CN. 1983. The use of irradiated pollen for differential gene transfer in wheat (Triticum aestivum). Theor Appl Genet. 65:103–111.
  • Somers DJ, Isaac P, Edwards K. 2004. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet. 109:1105–1114.
  • Tiwari VK, Rawat N, Neelam K, Kumar S, Randhawa GS, Dhaliwal HS. 2010. Substitutions of 2S and 7U chromosomes of Aegilops kotschyi in wheat enhance grain iron and zinc concentration. Theor Appl Genet. 121:259–269.
  • Tiwari VK, Riera-Lizarazu O, Gunn HL, Lopez K, Iqbal MJ, Kianian SF, Leonard JM. 2012. Endosperm tolerance of paternal aneuploidy allows radiation hybrid mapping of the wheat D-genome and a measure of γ ray-induced chromosome breaks. PLoS One. 7:e48815.
  • Wang L, Chen P, Wang X. 2010. Molecular cytogenetic analysis of Triticum aestivum-Leymus racemosus reciprocal chromosomal translocation T7DS·5LrL/T5LrS·7DL. Chinese Sci Bull. 55:1026–1031.
  • Wang L, Chen P. 2008. Development of Triticum aestivum-Leymus racemosus ditelosomic substitution line 7Lr#1S(7A) with resistance to wheat scab and its meiotic behavior analysis. Chinese Sci Bull. 53:3522–3529.
  • White PJ, Broadley MR. 2011. Physiological limits to zinc biofortification of edible crops. Front Plant Sci. 2:80.
  • Wu H, Qin J, Han J, Zhao X, Ouyang S, Liang Y, Zhang D, Wang Z, Wu Q, Xie J, et al. 2013. Comparative high-resolution mapping of the wax inhibitors Iw1 and Iw2 in hexaploid wheat. PLoS One. 8:e84691.
  • Zhang P, Friebe B, Lukaszewski AJ, Gill BS. 2001. The centromere structure in Robertsonian wheat-rye translocation chromosomes indicates that centric breakage-fusion can occur at different positions within the primary constriction. Chromosoma. 110:335–344.
  • Zhou C, Dong W, Han L, Wei J, Jia L, Tan Y, Zhi D, Wang ZY, Xia G. 2012. Construction of whole genome radiation hybrid panels and map of chromosome 5A of wheat using asymmetric somatic hybridization. PLoS One. 7:e40214.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.