13
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Gram-positive bacterial infection in severe sepsis

&
Pages 147-160 | Published online: 04 Dec 2011

References

  • McGowan JE. Increasing threat of Gram-positive bacterial infections in the intensive care unit setting. Crit. Care Med. 2001; 29(4): N 69–N 74.
  • Tanowitz H B, Chan J. Gram-positive sepsis. Crit. Care Med. 2000; 28(8): 3081–3082.
  • Brun-Buisson C, Doyon F, Carlet J. Bacteraemia and severe sepsis in adults: A multicenter prospective survey in ICUs and wards of 24 hospitals. French Bacteraemia-Sepsis Study Group. Am. J. Respir. Crit. Care Med. 1996; 154: 617–624.
  • Edgeworth JD, Treacher DF, Eykyn SJ. A 25-year study of nosocomial bacteraemia in an adult intensive care unit. Crit. Care Med. 1999; 27(8): 1421–1428.
  • Crowe M, Ispahani P, Humphreys H, Kelley T. Bacteraemia in the Adult Intensive Care Unit of a Teaching Hospital in Nottingham UK. 1985-1996. Eur. J. Clin. MicrobioL Infect. Dis. 1998; 17: 377–384.
  • Pittet D, Li N, Wenzel RP. Association of secondary and polymicrobial noscomial bloodstream infections with higher mortality. Eur. J. Clin. MicrobioL Infect. Dis. 1993; 12: 813–819.
  • Pittet D, Wenzel RP. Nosocomial bloodstream infections. Secular trends in rates, mortality, and contribution to total hospital deaths. Arch. Int. Med. 1995; 155: 1177–1184.
  • Aliaga L, Mediavilla JD, Llosa J, Miranda C, Rosa-Fraile M. Clinical Significance of Polymicrobial Versus Monomicrobial Bacteraemia Involving Pseudomonas aeruginos.. Eur. J. Clin. MicrobioL Infect. Dis. 2000; 19: 871–874.
  • Opal SM, Cohen J. Clinical Gram-positive sepsis: Does it fundamentally differ from Gram-negative bacterial sepsis. Crit. Care Med. 1999; 27(5): 1608–1616.
  • Sriskandan S, Cohen J. Gram-positive sepsis: Mechanisms and Differences from Gram-negative Sepsis. Infect. Dis. Clin. N. Am. 1999; 13(2): 397–411.
  • Teti G. Septic shock caused by Gram-positive bacteria. Trends MicrobioL 1999; 7(3): 100–101.
  • Verhoef J., Mattsson E. The role of cytokines in Gram-posi-tive bacterial shock. Trends MicrobioL 1995; 3(4): 136–140.
  • Hessle C, Andersson B, Wold AE. Gram-Positive Bacteria Are Potent Inducers of Monocytic Interleukin-12 (IL-12) while Gram-Negative Bacteria Preferentially Stimulate IL-10 Production. Infect. Immun. 2000; 68(6): 3581–3586.
  • Rabehi L, Irinopoulou T, Cholley B, Haeffner-Cavaillon N, Carreno M. Gram-Positive and Gram-Negative Bacteria Do Not Trigger Monocytic Cytokine Production through Simi-lar Intracellular Pathways. Infect. Immun. 2000; 69(7): 4590–4599.
  • Barnham MRD, Weightman NC, Anderson AW, Tanna A. Streptococcal toxic shock syndrome: a description of 14 cases from North Yorkshire, UK. Clin. MicrobioL Infect. 2002; 8: 174–181.
  • Stevens DL., Tanner M H, Winshop J et al. Severe group A streptococcal infections associated with a toxic shock-like syndrome and scarlet fever toxin A. New EngL J. Med. 1989; 321: 1–7.
  • Cone L.A, Woodhard DR, Schlievert PM, Tomory GS. Clini-cal and bacteriological observations of a toxic shock-like syndrome due to streptococcus pyogenes. N. Engl. J. Med. 1987; 317: 146–149.
  • Stevens DL. Invasive streptococcal infections. J. Infect. Chemother. 2001; 7:69–80.
  • Hoge CW, Schwartz B, Talkington DF, Breiman RF„ MacNeill EM, Englender SJ. The changing epidemiology of invasive group A streptococcal infections and the emergence of strep-tococcal toxic shock-like syndrome. A retrospective popu-lation-based study. JAMA 1993; 269: 384–389.
  • Baxter F, McChesney J. Severe Group A Streptococcal Infec-tion and Streptococcal Toxic Shock Syndrome. Can. J. Anaes. 2001;47(11): 1129–1140.
  • Stevens DL. Streptococcal toxic shock syndrome. Clin. MicrobioL Infect. 2002; 8(3): 133–136.
  • Dinges MM, Orwin PM, Schlievert PM. Exotoxins of Sta-phylococcus aureus. Clin. MicrobioL Rev. 2000; 13(1): 16–34.
  • Centers for Disease Control and Prevention. Four pediatric deaths from community-acquired methicillin-resistant Staphylococcus aureus - Minnesota and North Dakota, 1997-1999. JAMA 1999; 282(12): 1123–1125.
  • Kaul R, Mcgeer A, Low DE et al. Population-based surveil-lance for group A streptococcal necrotizing fasciitis: clini-cal features, prognostic indicators and microbiological analysis of seventy-seven cases. Am. J. Med. 1997; 103: 18–24.
  • Sriskandan S, Moyes D, Cohen J. Detection of circulating bacterial superantigen and lymphotoxin-a in patients with streptococcal toxic-shock syndrome. Lancet 1996; 348: 1315–1316.
  • Stevens DL. The flesh-eating bacterium: what‘s next? J. In-fect. Dis. 1999; 179\(supp 2): S366–S374.
  • Lodise TP, Mckinnon PS, Tam V H, Rybak MJ. Clinical out-comes for patients with bacteraemia caused by vancomy-cin-resistant enterococcus in a level 1 trauma center. Clin. Infect. Dis. 2002; 34(7): 922–929.
  • Suppola JP, Kuikka A, Vaara M, Valtonen V. Comparison of Risk Factors and Outcome in Patients with Enterococcus faecalis versus Enterococcus faecium bacteraemia. Scand. J. Infect. Dis. 1998; 30: 153–157.
  • Georges H, Leroy 0, Vandenbussche C, et al. Epidemio-logical features and prognosis of severe community-ac-quired pneumococcal pneumonia. Intens. Care Med. 1999; 25: 198–206.
  • Waterer GW, Wunderink RG. The influence of the severity of community acquired pneumonia on the usefulness of blood cultures. Resp. Med. 2001: 78–82.
  • Simpson JCG., Macfarlane JT, Watson J, Woodhead MA. A national confidential enquiry into community acquired pneu-monia in young adults in England and Wales. Thorax 2000; 55: 1040–1045.
  • Macfarlane J. Severe pneumonia and a second antibiotic. Lancet 2002; 359: 1170–1171.
  • Waterer GW, Somes GW, Wunderink RG. Monotherapy may be suboptimal for severe bacteraemic pneumococcal pneu-monia. Arch. Int. Med. 2001; 161: 1837–1842.
  • Moise PA, Schentag JJ. Vancomycin treatment failures in Staphylococcal aureus lower respiratory tract infections. Int. J. Antimicrobial Agents 2000; 16: S31–S34.
  • Fagon JY, Chastre J, Vuagnat A et al. Nosocomial pneumo-nia and mortality amoung patients in intensive care units. JAMA 1996; 275: 866–869.
  • Bodi M, Ardanuy C, Rello J. Impact of Gram-positive re-sistance on outcome of nosocomial pneumonia. Crit. Care. Med. 2001; 29(4): N82–N86.
  • Rubin RJ, Harrington CA, Poon A, Dietrich K, Greene JA, Moiduddin A. The economic impact of Staphylococcus aureus infection in New York City Hospitals. Emerg. Infect. Dis. 1999; 5: 9–17.
  • Gonzales C, Rubio M, Romero-Vivas J. et al. Bacteraemic pneumonia due to Staphylococcus aureus: a comparison of disease caused by methicillin-resistant and methicillin-susceptible organisms. Clin. Infect. Dis. 1999; 29: 1171–1177.
  • Harrison L H, Pass MA, Mendelson AB, et al. Invasive menin-gococcal disease in adolescents and young adults. JAMA 2001; 286(8): 694–699.
  • Durand ML, Calderwood SB, Weber DJ, et al. Acute bacte-rial meningitis in adults: a review of 493 episodes. N. EngL J. Med. 1997; 328: 328–329.
  • Aubertin M, Porcher R, Bruneel F, et al. Pneumococcal Men-ingitis in the Intensive Care Unit. Prognostic factors of Clinical Outcome in a series of 80 cases. Am. J. Resp. Crit. Care Med. 2002; 165: 713–717.
  • Gins NI, Farid Z, Mickail IA, Farrag I, Sultan Y, Kilpatrick ME. Dexamethasone treatment for bacterial meningitis in children and adults. Pediatr. Infect. Dis. 1989; 8: 848–851.
  • Thomas R, Tulzo Y, Bouget J, et al. Trial of dexamethasone treatment for severe bacterial meningitis in adults. Int. Care Med. 1999; 25: 475–480.
  • Paris MM, Hickey SM, Uscher Ml, Shelton S, Olsen KD, McCracken GH Jr. Effect of dexamethasone on therapy of experimental penicillin- and cephalosporin-resistant pneu-mococcal meningitis. Antimicrob. Agents Chemother. 1994; 38(6): 1320–1324.
  • Gordon JJ, Harter DH, Phair JP. Meningitis due to Staphy-lococcus aureus. Am. J. Med. 1985; 78(1): 965–970.
  • Jensen AG, Espersen F, Skinhoj P, Rosdahl VT, Frimodt-Moller N. Staphylocococcus aureus meningitis. A review of 104 nationwide, consecutive cases. Arch. Intern. Med. 1993; 23; 153(16): 1902 –1908.
  • Lyerly DM, Krivan HC, Wilkins TD. Clostridium difficile: its disease and toxins. Clin. MicrobioL Rev. 1998; 1: 1–18.
  • Kuijper EJ, de Weerdt J, Kato H, et al. Noscomial Outbreak of Clostridium difficile-Associated Diarrhoea due to a Clindamycin-Resistant Enterotoxin A-Negative Strain. Eur. J. Clin. Microbiol. Infect. Dis. 2001; 20: 528–534.
  • Nath SK, Thornley JH, Kelly M, et al. A sustained outbreak of Clostridium difficile in a general hospital: persistence of a toxigenic clone in four units. Infect. Control Hosp. EpidemioL 1994; 15(6): 382–389.
  • Samore M H, Bettin KM, DeGirolami PC, et al. Wide diver-sity of Clostridium difficile types at a tertiary referral hos-pital. J. Infect. Dis. 1994; 170(3): 615–621.
  • Madsen J M. Toxins as weapons of mass destruction. A comparison and contrast with biological-warfare and chemi-cal-warfare agents. Clin. Lab. Med. 2001; 21(3): 593–605.
  • Jackson PJ, Hugh-Jones ME, Adair DM et al. PCR analysis of tissue samples from the 1979 Sverdlovsk anthrax vic-tims: the presence of multiple Bacillus anthracis strains in different victims. Proc. Natl. Acad. Sci. USA 1998; 95: 1224–1229.
  • Shafazand S, Doyle R, Ruoss S, Weinacker A, Raffin TA. Inhalational Anthrax. Epidemiology, Diagnosis, and Man-agement. Chest 1999; 116:1369–1376.
  • Swartz MN. Recognition and Management of Anthrax - An Update. N. EngL J. Med. 2001; 345: 1621–1626.
  • Roberts Al, Blumberg RS, Christ AD, Brolin RE, Ebert EC. Staphylococcal enterotoxin B induces potent cytotoxic ac-tivity by intraepithelial lymphocytes. Immunology 2000; 101: 185–190.
  • Gerlach D, Schmidt K, Fleisher B. Basic streptococcal superantigens (SPEX/SMEZ or SPEC) are responsible for the mitogenic activity of the so-called mitogenic factor (MF). FEMS Immunol. Med. Micro. 2001; 30: 209–216.
  • Hoe NP, Ireland RM, Deleo FR, et al. Insight into the mo-lecular basis of pathogen abundance: Group A Streptococ-cus inhibitor of complement inhibits bacterial adherence and internalisation into human cells. Proc. Natl. Acad. Sci. 1999; 11:7646–7651.
  • Plitnick LM, Jordan RA, Banas JA, et al. Lipoteichoic Acid inhibits interleukin-2 (1L-2) function by direct binding to IL-2. Clin. Diag. Lab. ImmunoL 2001; 8(5): 972–979.
  • Lemjabber H, Basbaum C. Platelet-activating factor receptor and ADAM10 mediate responses to Staphylococcal aureus in epithelial cells. Nature Med. 2002; 8(1): 41–46.
  • Underhill DM, Ozinsky A, Najjar AM, et al. The Toll-like receptor 2 is recruited to macrophage phagosomes and dis-criminates between pathogens. Nature 1999; 401: 811–815.
  • Stuyt RJ, Netea MG, Kim S, et al. Differential Roles of Interleukin-18 (1L-18) and IL-12 for Induction of Gamma Interferon by Staphylococcal Cell Wall Components and Superantigens. Infect. Immun. 2001; 69(5): 5025–5030.
  • Kimpe SJ, Kengatharan M, Thiemermann C, Vane JR. The cell wall components peptidoglycan and lipoteichoic acid from Staphylococcus aureus act in synergy to cause shock and multiple organ failure. Procl. Natl. Acad. Sci. 1995; 92: 10359–10363.
  • Kengatharan KM, Kimpe S, Robson C, Foster SJ, Thiemermann C. Mechanism of Gram-positive Shock: Iden-tification of Peptidoglycan and Lipoteichoic Acid Moieties Essential in the Induction of Nitric Oxide Synthase, Shock, and Multiple Organ Failure. J. Exp.. Med. 1998; 188(2): 305–315.
  • Ginsburg. Role of lipoteichoic acid in infection and inflam-mation. Lancet Infect. Dis. 2002; 2(3): 171–179.
  • Wang JE, Jorgensen PF, Almlof M, et al. Peptidoglycan and lipoteichoic acid from Staphylococcus areus induce tumour necrosis factor alpha, interleukin 6 (1L-6), and IL-10 pro-duction in both T cells and monocytes in a human whole blood model. Infect. Immun. 2000; 68(7): 3965–3970.
  • Cusumano V, Fera MT, Carbone M, Ciliberti A, Bellantoni A, Cusumano V. Synergic activities of streptococcal pyro-genic exotoxin A and lipoteichoic acid in cytokine induc-tion. New MicrobioL 2000; 23(1): 37–45.
  • Dziarski R, Viriyakosol S, Kirkland TN, Gupta D. Soluble CD14 Enhances Membrane CD14-Mediated Responses to Peptidoglycan: Structural Requirements Differ from Those for Responses to Lipopolysaccharide. Infect. Immun. 2000; 68(9): 5254–5260.
  • Michel T, Reichhart J, Hoffman JA, Royet J. Drosophila Toll is activated by Gram-positive bacteria through a circulat-ing peptidoglycan recognition protein. Nature 2001; 414: 756–759.
  • Liu Y, Wang Y, Yamakuchi M, et al. Upregulation of Toll-like Receptor 2 Gene Expression in Macrophage Response to Peptidoglycan and High Concentration of Lipopolysac-charide Is Involved in NF-kB Activation. Infect. Immun. 2001; 69(5): 2788–2796.
  • Dziarski R, Wang Q, Miyake K, Kirschning CJ, Gupta D. MD-2 Enables Toll-Like Receptor 2 (TLR2)-Mediated Re-sponses to Lipopolysaccharide and Enhances TLR2-Medi-ated Responses to Gram-Positive and Gram-Negative Bac-teria and Their Cell Wall Components. J. Immunol. 2001; 166: 1938–1944.
  • Wang Q, Dziarski R, Kirsching CJ, Muzio M, Gupta D. Micrococci and Peptidoglycan Activate TLR2-MyD88-IRAK-TRAF-NIK-NF-kB Signal Transduction Pathway That Induces Transcription of Interleukin-8. Infect. ImmunoL 2001; 69(4): 2270–2276.
  • Lorenz E, Mira JP, Cornish KL, Arbour NC, Schwartz DA. A Novel Polymorphism in the Toll-Like Receptor 2 Gene and Its Potential Association with Staphylococcal Infec-tion. Infect. Immun. 68(11): 6398–6401.
  • Henneke P, Takeuchi 0, van Strijp JA, et al. Novel Engage-ment of CD14 and Multiple Toll-like Receptors by Group B Streptococci. J. ImmunoL 2001; 167: 7069–7076.
  • Bouchon A, Facchetti F, Weigand MA, Colonna M. TREM-1 amplifies inflammation and ia a crucial mediator of sep-tic shock. Nature 2001; 410: 1103–1107.
  • Calandra T, Spiegal LA, Metz ON, Bucala R. Macrophage migration inhibitory factor is a critical mediator of the acti-vation of immune cells by exotoxins of Gram-positive bac-teria. Proc. Natl. Acad. Sci. 1998; 95: 11383–11388.
  • Paton JO, Andrew PW, Boulnois GJ, Mitchell TJ. Molecular analysis of the pathogenicity of Streptococcus pneumoniae: the role of pneumococcal proteins. Ann. Rev. Microbiol. 1993; 47: 89–115.
  • Braun JS, Novak R, Gao G, Murray PJ, Shenep JL. Pneumolysin, a protein toxin of Streptococcus pneumoniae, induces nitric oxide production from macrophages. Infect. Immun. 1999; 67(8): 3750–3756.
  • Madden JC, Ruiz N, Caparon M. Cytolysin-Mediated Trans-location (CMT): A Functional Equivalent of Type III Secre-tion in Gram-Positive Bacteria. Cell 2001; 104:143–152.
  • Doran KS, Chang JC, Benoit VM, Eckmann L, Nizet V. Group B streptococcal beta-hemolysin/cytolysin promotes invasion of human lung epithelial cells and the release of interleukin-8. J. Infect. Dis. 2002; 185(2): 196–203.
  • Kapur V, Topouzis S, Majesky MW, et al. A conserved Streptococcus pyogenes extrace II u la r cysteine protease cleaves human fibronectin and degrades vitronectin. Microb. Pathog. 1993; 15: 327–346.
  • Kapur V, Majeski MW, Li LL, Black RA, Musser JM. Cleav-age of interleukin lb precursor to produce active IL-lb by a conserved extracellular cysteine protease from Streptococcus pyogenes. Proc. Natl. Acad. Sci. USA 1993; 90: 7676–7680.
  • Sriskandan S, Cohen J. Kallikrein-Kinin System Activation in Streptococcal Toxic Shock Syndrome. Clin. Infect. Dis. 2000; 30: 961–962.
  • Herwald H, Colin M, Muller-Esterl W, Bjork L. Streptococ-cal cysteine proteinase releases kinins: a novel virulence mechanism. J. Exp. Med. 1996; 184: 665–673.
  • Watanabe Y, Todome Y, Ohkuni H, et al. Cysteine Protease Activity and Histamine Release from the human mast cell line H MC-1 stimulated by recombinant streptococcal pyro-genic exotoxin B/Streptococcal Cysteine Protease. Infect. Immun. 2002; 70(7): 3944–3947.
  • Mattisson E, Herwald H, Cramer H, Persson K, Sjobring U, Bjorck L. Staphylococcal aureus Induces Release of Bradyki-nin in Human Plasma. Infect. Immunol. 2001; 69(6): 3877–3882.
  • Ashbaugh CD, Wessels MR. Abscence of a Cysteine Pro-tease Effect on Bacterial Virulence in Two Murine Models of Human Invasive Group A Streptococcal Infection. Infect. Immun. 2001; 69(11): 6683–6686.
  • Kum WS, Cameron SB, Hung RWY, Kalyan S, Chow AW. Temporal Sequence and Kinetics of Proinflammatory and Anti-inflammatory Cytokine Secretion Induced by Toxic Shock Syndrome Toxin 1 in Human Peripheral Blood Mono-nuclear cells. Infect. Immun. 2001; 69(12): 7544–7549.
  • Sperber K, Silverstein L, Brusco C,Yoon C, Mullin GE, Mayer L. Cytokine Secretion Induced by Superantigens in Periph-eral Blood Mononuclear Cells, Lamina Propria Lymphocytes, and Intraepithelial Lymphocytes. Clin. Diag. Lab. Immunol. 1999; 2(4): 473–477.
  • Llewelyn M., Cohen J. Superantigens: microbial agents that corrupt immunity. Lancet Infect. Dis. 2002; 2(3): 156–162.
  • Fraser J., Arcus V., Kong P., Baker E., Proft T. Superantigens-powerful modifiers of the immune system. MoL Med. To-day; 2000; 6: 125–132.
  • Tiedmann R.E., Fraser J.D. Cross-linking of MHC class ll molecules by staphylococcal enterotoxin A is essential for antigen-presenting cell and T-cell activation. J. Immunol. 1996; 157(9): 3958–3966.
  • Mehindate K., Thibodeau J., Dohlston M., Kalland T., Sekaly R.P., Mourad W. Cross-linking of major histocompatability complex class ll molecules by staphylococcal enterotoxin A superantigen is a requirement for inflammatory cytokine gene expression. J. Exp. Med. 1995; 182(5): 1573–1577.
  • Proft T, Moffat SL, Berkahn CJ, Fraser JD. Identification and characterization of novel superantigens from Strepto-coccus pyogenes. J. Exp. Med. 1999; 189(1): 89–102.
  • Proft T, Moffat SL, Weller KD, Paterson A, Martin D, Fraser JD. The streptococcal superantigen SMEZ exhibits wide al-lelic variation, mosaic structure and significant antigenic variation. J. Exp. Med. 2000; 1(10): 1765–1776.
  • Schumann J. Synergism of Pseudomonas aeruginosa exotoxin A with endotoxin, superantigen or TNF results in TNFR1-and TNFR2-dependent liver toxicity in mice. Immunol. Lett. 2000; 74: 165–172.
  • Blank C, Luz A, Bendigs S, Erdmann S, Wagner H. Superantigen and endotoxin synergize in the induction of lethal shock. Eur. J. ImmunoL 1997; 27: 825–833.
  • Parsonnet J, Gillis ZA. Production of Tumour Necrosis Fac-tor by human Monocytes in response to toxic shock syn-drome toxin 1. J. Infect. Dis. 1988; 158(5): 1026–1033.
  • Luhm J, Kirchner H, Rink L. One-way synergistic effect of low superantigen concentrations on lipopolysaccharide-in-duced cytokine production. J. Intelfer. Cyt. Res. 1997; 17: 229–238.
  • Dinges MM, Schlievert PM. Role of T cells and Gamma interferon during induction of hypersensitivity to lipopoly-saccharide by Toxic Shock Syndrome Toxin 1 in Mice. Infect. Immunol. 2001; 69(3); 1256–1264.
  • Vella A, McCormack JE, Linsley PS, Kappler JW, Marrack P. Lipopolysaccharide interferes with the induction of pe-ripheral T cell death. Immunity 1995; 2(3): 261–270.
  • Hochholzer P, Grayson LB, Wagner H, Pfeffer K, Heeg K. Role of Interleukin-18 (I L-18) during Lethal Shock: Decreased Lipopolysaccharide Sensitivity but Normal Superantigen Reaction in IL-18-Deficient Mice. Infect. Immunol. 2000; 68(6): 3502–3508.
  • Dunne WM. Bacterial Adhesion: Seen Any Good Biofilms Lately? Clin. MicrobioL Rev. 2002; 15(2): 155–166.
  • Donlan RM, Costerton JW. Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms. Clin. MicrobioL Rev. 2002; 15(2): 167–193.
  • Ziebuhr W, Helimann C, Gotz F, et al. Detection of the inter-cellular adhesion gene cluster (ica) and phase variation in S. epidermidis blood culture strains and mucosa isolates. In-fect. Immunol. 1997; 65: 890–896.
  • de Silva G DI, Kantzanou M, Justice A, et al. The ica Operon and Biofilm Production in Coagulase-Negative Staphylo-cocci Associated with Carriage and Disease in a Neonatal Intensive Care Unit. J. Clin. MicrobioL 2002; 40(2): 382–388.
  • Shiau AL, Wu CL. The inhibitory effect of S. epidermidis slime on the phagocytosis of murine peritoneal macrophages is interferon-independent. MicrobioL ImmunoL 1998; 42: 33–40.
  • Jones SM, Morgan M, Humphrey TJ, Lappin-Scott H. Ef fect of vancomycin and rifampicin on methicillin-resistant Staphylococcus aureus biofilms. Lancet 2001; 357: 40–41.
  • O'Gara JP, Humphreys H. Staphylococus epidermidis biofilms: importance and implications. J. Med. MicrobioL 2001; 50(7): 582–587.
  • Singh PK, Parsek MR, Greenberg EP, Welsh MJ. A compo-nent of innate immunity prevents bacterial biofilm devel-opment. Nature 2002; 417: 552–555.
  • Guillen C., McInnes IB., Vaughan DM, et al. Enhanced Th 1 response to Staphylococcus aureus infection in human lactoferrin-transgenic mice. J. ImmunoL 2002; 168(8): 3950–3957.
  • Miwa K, Fukuyama M, Igarashi H. Rapid assay for detec-tion of toxic shock syndrome toxin 1 from human sera. J. Clin. MicrobioL 1994; 32(2): 539–542.
  • Pitt TL, Saunders NA. Molecular bacteriology: a diagnostic tool for the millennium. J. Clin. PathoL 2000; 53: 71–75.
  • Fluit AC, Visser MR, Schmitz F. Molecular Detection of Antimicrobial Resistance. Clin. MicrobioL Rev. 2001; 14(4): 836–871.
  • Cursons RT, Jeyerajah E, Sleigh JW. The use of polymerase chain reaction to detect septicaemia in critically ill patients. Crit. Care Med. 1999; 27(5): 860–861.
  • Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N. EngL J. Med. 2001; 345(19): 1368–1377.
  • Weinstein RA. Controlling antimicrobial resistance: The role of infection control and antimicrobial use. In: Program of the 4th Decennial International Conference on Noscomial and Healthcare-Associated Infections. Atlanta, Centers for Disease Control and Prevention, March 5–9; 2000: 7.
  • Austin DJ, Bonten MJM, Weinstein RA, Slaughter S, Anderson RM. Vancomycin-resistant enterococci in inten-sive-care hospital settings: Transmission dynamics, persistence and the impact of infection control programs. Proc. NatL Acad. Sci. 1999; 96: 6908–6913.
  • von Eiff C, Becker K, Machka K, Stammer H, Peters G. Nasal carriage as a source of Staphylococcus aureus bacterae- m i a. N. Engl. J. Med. 2001; 344(1): 11–16.
  • Kluytmans JA, Mouton JW, Ljzerman EPF et al. Nasal car-riage of Staphylococcal aureus as a major risk factorfor wound infections after cardiac surgery. J. Infect. Dis. 1995; 171: 216–219.
  • Schentag JJ. Antimicrobial management strategies for Gram-positive bacterial resistance in the intensive care unit. Crit. Care Med. 2001; 29(4): N100–N107.
  • Schentag JJ., Hyatt JM, Carr JR et al. Genesis of methicillin-resistant Staphylococcal aureus (MRSA), how treatment of MRSA infections has selected for vancomycin-resistant En-terococcus faecium, and the importance of antibiotic manage-ment and infection control. Clin. Infect. Dis. 1998 26: 1204–1214.
  • Raymond DP, Pelletier SJ, Crabtree TD, et al. Impact of a rotating empiric antibiotic schedule on infectious mortality in an intensive care unit. Crit. Care Med. 2001; 29(6): 1101–1108.
  • Ginzburg E, Namias N, Brown M, Ball S. Hameed SM, Cohn SM. Gram positive infection in trauma patients: new strategies to decrease emerging Gram-positive resistance and vancomycin toxicity. Int. J. Antimicrobial Agents 2000; 16: S39–S42.
  • John JF Jr. Antibiotic cycling: is it ready for prime time? [editorial]. Infect. Control Hosp. EpidemioL 2000; 21: 9–11.
  • Shankar N, Baghdayan AS, Gilmore MS. Modulation of virulence within a pathogenicity island in vancomycin-re-sistant Enterococcus faecalis. Nature 2002; 417: 746–750.
  • di Filippo A, De Gaudio AR, Novelli A, et al. Continuous infusion of vancomycin in methicillin-resistant staphyloco-ccus infection. Chemotherapy 1998; 44(1): 63–68.
  • Garcia MS, Galache JAC, Diaz JL et al. Effectiveness and Cost of Selective Decontamination of the Digestive Tract in Critically ill Intubated Patients. Am. J. Respir. Crit. Care Med. 1998; 158: 908–916.
  • Nardi G, Silvestre TD, De Monte A, et al. Reduction in Gram-positive pneumonia and antibiotic consumption following the use of a SDD protocol including nasal and oral mupirocin. Eur. J. Emerg. Med. 2001; 8(3): 203–214.
  • D'Amico R, Pifferi S, Leonetti C, Torn i V, Tinazzi A, Liberati A. Effectiveness of antibiotic prophylaxis in critically ill adult patients: systematic review of randomized control-led trials. BMJ 1998; 316: 1275–1285.
  • Hammond JMJ, Potgieter PD. Long-term effect of selective decontamination on microbial resistance. Crit. Care Med. 1995; 23: 637–645.
  • Ebner W, Kropec- Hubner A, Dashner FD. Bacterial Resist-ance and Overgrowth due to Selective Decontamination of the Digestive Tract. Eur. J. Clin. Microbiol. Infect. Dis. 2000; 19: 243–247.
  • Lingnau W, Berger J, Javorsky F, Fille M, Allerberger F, Benzer H. Changing bacterial ecology during a five year period of selective intestinal decontamination. J. Hosp. In-fect. 1998; 39: 195–206.
  • Verwaest C, Verbist L, Lauwers P. Randomised, controlled trial of selective digestive decontamination in 600 mechani-cally ventilated patients in a multidisciplinary intensive care unit. Crit. Care Med. 1997; 25: 63–71.
  • Stevens DL, Bryant E, Hackett SP. Antibiotic effects on bacterial viability, toxin production and host response. Clin. Infect. Dis. 1995; 20\(Supp 2): S154–157.
  • Gao JJ, Zuvanich EG, Xue Q, Horn DL, Silverstein R, Morrison DC. Cutting edge: bacterial DNA and LPS act in synergy in inducing nitric oxide production in RAW 264.7 macrophages. J. Immunol. 1999; 163: 4095–4099.
  • Hacker G, Redecke V, Hacker H. Activation of the immune system by bacterial CpG-DNA. Immunology 2002; 105: 245–251.
  • Holzheimer RG. The significance of endotoxin release in experimental and clinical sepsis in surgical patients-evi-dence for antibiotic-induced endotoxin release? Infection 1998; 26(2): 77–84
  • Nau R, Eiffert H. Modulation of Release of Proinflammatory Bacterial Componds by Antibacterials: Potential Impact on Course of Inflammation and Outcome in Sepsis and Meningitis. Clin. MicrobioL Rev. 2002; 15(1): 95–110.
  • Mattsson E, Van Dijk H, Verhoef J, Norrby R, Rollof J. Supernatants from S. epidermidis grown in the presence of different antibiotics induce differential release of tumour necrosis factor alpha from human monocytes. Infect. Immun. 1996; 164: 4351–4355.
  • van Langeveld P, Ravensbergen E, Grashoff P, Beckhuizen H, Groeneveld PH, van Dissel JT. Antibiotic-induced cell wall fragments of S. aureus increase endothelial chemokine secretion and adhesiveness for granulocytes. Antimicrob. Agents Chemother. 1999; 43: 2984–2989.
  • Cohen J. Adjuvant therapy in sepsis: A critical analysis of the clinical trial programme. Br. Med. Bull. 1999; 55: 212–225.
  • Ziegler EJ, Fischer CJ Jr, Sprung CL, et al. Treatment of gram-negative bacteraemia and septic shock with HA-1A human monoclonal antibody against endotoxin. A randomised, double blind, placebo-controlled trial. The HA-1A Sepsis Study Group. N. EngL J. Med. 1991; 324(7): 429–436.
  • McCormick JK, Tripp TJ, Olmsted SB, et al. Development of streptococcal pyrogenic exotoxin C vaccine toxoids that are protective in the rabbit model of toxic shock syndrome. J. ImmunoL 2000; 165(4): 2306–2312.
  • Roggiani M, Stoehr JA, Olmsted SB, Matsuka YV, Pillai S, Ohlendorf D H. Toxoids of streptococcal pyrogenic exotoxin A are protective in rabbit models of streptococcal toxic shock syndrome. Infect. Immun. 2000; 68(9): 5011–5017.
  • Lipman J, Gomersall CD, Gin T, Joynt GM, Young RJ. Con-tinuous infusion of ceftazidime in intensive care: a randomized controlled trial. J. Antimicrob. Chemother. 1999; 43: 309–311.
  • Arad G, Levy R, Hillman D, Kaempfer R. Superantigen antagonist protects against lethal shock and defines a new domain for T-cell activation. Nature Med. 2000; 6(4): 414–421.
  • Vincent Collins L, Eriksson K, Ulrich RG, Tarkowski A. Mucosal tolerance to a bacterial superantigen indicates a novel pathway to prevent toxic shock. Infect. Immun. 2002; 70(5): 282–2287.
  • Patel R, Rouse MS, Florez MV, et al. Lack of Benefit of Intravenous Immune Globulin in a Murine Model of Group A Streptococcal Necrotizing Fasciitis. J. Infect. Dis. 2000; 181:230–234.
  • Werdan K. Intravenous immunoglobulin for prophylaxis and therapy of sepsis. Curr. Opin. Crit. Care 2001; 7(5): 354–361.
  • Schlievert PM. Use of intravenous immunoglobulin in the treatment of staphylococcal and streptococcal toxic shock syndromes and related illnesses. J. Allergy Clin. Immunol. 2001; 108: S107–S110.
  • Fronhoffs S, Luyken J, Steuer K, Hansis M, Vetter H, Walger P. The effect of C1-esterase inhibitor in definite and sus-pected streptococcal toxic shock syndrome. Report of seven patients. Int. Care Med. 2000; 26: 1566–1570.
  • Saetre T, Hoiby EA, Aspelin T, Lermark G, Egeland T, Lyberg T. Aminoethyl-isothiourea, a nitric oxide synthase inhibitor and oxygen radical scavinger, improves survival and counteracts haemodynamic deterioration in a porcine model of streptococcal shock. Crit. Care Med. 2000; 28(8): 2697–2706.
  • Sriskandan S, Moyes D, Buttery LK et al. The role of nitric oxide in experimental murine sepsis due to pyogenic exo-toxin A-producing Streptococcus pyogenes. Infect. Immunol. 1997; 65: 1767–1772.
  • Bannan JD, Mingo F, Viteri. Neutralization of streptococcal pyrogenic exotoxins and staphylococcal enterotoxins by an-tiserum to synthetic peptides representing conserved amino acid motifs. Adv. Exp. Med. Biol. 1997; 418: 903–907.
  • Campbell DE, Georgiou GM, Kemp AS. Pooled Human Immunoglobulin Inhibits IL-4 but not IFN-g or TNF-a se-cretion Following In Vitro Stimulation Of Mononuclear Cells With Staphylococcal Superantigen. Cytokine 1999; 11(5): 359–365.
  • Scott MG, Gold MR, Hancock REW. Interaction of Cationic Peptides with Lipoteicoic Acid and Gram-Positive Bacte-ria. Infect. Immunol. 1999; 67(12): 6445–6453.
  • Kaul R, McGeer A, Norrby-Teglund A, Kobt M, Schwartz B, O'Rourke K. Intravenous immunoglobulin therapy for streptococcal toxic shock syndrome- a comparative obser-vational study. The Canadian Streptococcal Study Group. Clin. Infect. Dis. 1999; 28(4): 800–807.
  • Hale ML, Margolin SB, Krakauer T, Roy CJ, Stiles BG. Pirfenidone blocks the in vitro and in vivo effects of Staphy-lococcal enterotoxin B. Infect. Immunol. 2002; 70(6): 2989–2994.
  • Shupp JW, Jett M, Pontzer CH. Identification of a transcytosis epitope on Staphylococcal enterotoxins. Infect. Immunol. 2002; 70(4): 2178–2186.
  • Shinefield H, Black S, Fattom A, et al. Use of a Staphylococus qureus conjugate vaccine in patients receiving hemodialysis. N. EngL J. Med. 346(7): 491–496.
  • Daum RS, Seal JB. Evolving antimicrobial chemotherapy for Staphylococcus aureus infections: Our backs to the wall. Crit. Care Med. 2001; 29(4): supp: N92–N96.
  • Loeffler JM, Nelson D, Fischetti VA. Rapid Killing of Strep-tococcus pneumoniae with a Bacteriophage Cell Wall Hydro-lase. Science 2001; 294:2170–2172.
  • Nelson D, Loomis L, Fischetti VA. Prevention and elimina-tion of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc. Natl. Acad. Sci. 2001; 98(7): 4107–4112.
  • Biswas B, Adhya S, Washaert P, et al. Bacteriophage therapy rescues mice bacteraemic from a clinical isolate of Vanco-mycin-resistant Enterococcus faecium. Infect. Immunol. 2002; 70(1): 204–210.
  • Steidler L et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 2000; 289: 1352–1355.
  • Reid G, Howard J, Gan BS. Can bacterial interference pre-vent infection? Trends Microbiol. 2001; 9(9): 424–428.
  • Ji G. et al. Bacterial interference caused by autoinducing peptide variants. Science 1997; 276:27–2030. Care Med. 2001; 29(6); 1101-1108.
  • Scharfman WB, Tillotson JR, Taft EG, Wright E. Plas-mapheresis for meningococcaemia with disseminated in-travascular coagulation. New EngL J. Med. 1979; 300: 1277–1278.
  • MM Hoeper, Abou-Rebyeh F, Athman C, Schwarz A. Plas-mapheresis in Streptococcal Toxic Shock Syndrome. Crit. Care Med. 2001; 29: 2399.
  • Cole L, Bellomo R, Hart G, et al. A phase ll randomised, controlled trial of continuous hemofiltration in sepsis. Crit. Care Med. 2002; 30(1): 100–106.
  • Murray BE. Vancomycin-resistant enterococcal infections. New EngL J. Med. 2000; 342: 710–721.
  • Zimbelman J, Palmer A, Todd J. Improved outcome of clindamycin compared with beta-lactam antibiotic treat-ment for invasive Streptococcus pyogenes infection. Pediatr. Infect. Dis. J. 1999; 18: 1096–1100.
  • Fluit AC, Wielders CLC, Verhoeff J, Schmitz FJ. Epidemi ology and susceptibilty of 3,051 Staphylococus aureus iso-lates from 25 university hospitals participating in the Euro-pean SENTRY Study. J. Clin. Microbiol. 2001; 39(10): 3727–3732.
  • Sriskandan S, McKee A, Hall L, Cohen J. Comparative effects of clindamycin and ampicillin on superantigenic activity of Streptococcus pyogenes. J. Anti microb. Chemother. 1997; 40(2): 275–277.
  • Ricaurte JC, Boucher HW, Tyrett GS, Moellering RC, LaBombardi VJ, Kislak JW. Chloramphenicol treatment for vancomycin-resistant Enterococcus faecium bacteraemia. Clin. Microbial. Infect. 2001; 7: 17–21.
  • Lautenbach E, Schuster MG, Bilker WB, Brennan PJ. The role of chloramphenicol in the treatment of bloodstream infection due to vancomycin-resistant enterococci. Clin. In-fect. Dis. 1998; 27: 1259–1265.
  • Wareham DW, Wilson P. Chloramphenicol in the 21st cen-tury. Hosp. Med. 2002; 63(3): 157–161.
  • Guerin F, Buu-hoi A, Mainardi J. Outbreak of methicillin-resistant S. aureus with reduced susceptibility to glycopeptides in a Paris hospital. J. Clin. Microbiol. 2000; 38: 2985–2988.
  • Dowzicky M, Nadler HL, Ferger C et al. Evaluation of in vitro activity of quinupristin/dalfopristin and comparator antimicrobial agents against worldwide clinical trial and other laboratory isolates. Am. J. Med. 1998; 104: 34S–42S.
  • Fagon J, Patrick H, Haas DW et al. Treatment of gram-positive nosocomial pneumonia. Prospective randomized comparison of quinupristin/dalfopristin versus vancomy-cin. Noscomial Pneumonia Group. Am. J. Respir. Crit. Care Med. 2000; 161: 753–762.
  • Tally FP, Michael Z, Wasilewski MM et al. Daptomycin : a novel agent for Gram-positive infections. Exp. Opin. Inves. Drugs 1999; 8: 1223–1238.
  • Bonten MJ, Willems R, Weinstein RA. Vancomycin-resist-ant enterococci: why are they here, and where do they come from? Lancet Infect. Dis. 2001; 1(5): 314–325.
  • Paris MM, Ramilo 0, McCracken GH Jr. Minireview: man-agement of meningitis caused by penicillin-resistant Strep-tococcus pneumoniae. Antimicrob. Agents Chemother. 1995; 39(10): 2171–2175.
  • Verbist L. The antimicrobial activity of fusidic acid. J. Antimicrob. Chemother. 1990; 25(supp): 1–5.
  • Chang S-C, Hsieh S, Chen M, Sheng W, Chen Y. Oral fusidic acid fails to eradicate methicillin-resistant Staphylococcus aurues colonization and results in emergence of fusidic acid-resistant strains. Diag. Microbiol. Infect. Dis. 2000; 36: 131–136.
  • Fridkin SK, Edwards JR, Courval JM et al. Intensive care antimicrobial resistance epidemiology (ICARE) project and the National Nosocomial Infections Surveillance System (NNIS) hospitals. The effect of vancomycin and third-gen-eration cephalosporins on prevalence of vancomycin-resist-ant enterococci in 126 US adult intensive care units. Ann. Intern. Med. 2001; 135(3): 175–183.
  • Chow JW. Aminoglycoside resistance in enterococci. Clin. Infect. Dis. 2000; 31: 586–589.
  • Zwaveling JH, Maring JK, Klompmaker et al. Selective de-contamination of the digestive tract to prevent postopera-tive infection: a randomised placebo-controlled trial in liver transplant patients. Crit. Care Med. 2002; 30(6); 1204–1209.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.