613
Views
24
CrossRef citations to date
0
Altmetric
In Vitro and Animal Studies

Modulation of gut microbiota by polyphenols from adlay (Coix lacryma-jobi L. var. ma-yuen Stapf.) in rats fed a high-cholesterol diet

, , , , , & show all
Pages 783-789 | Received 20 May 2015, Accepted 27 Aug 2015, Published online: 25 Sep 2015

References

  • Adom KK, Sorrells ME, Liu RH. 2005. Phytochemicals and antioxidant activity of milled fractions of different wheat varieties. J Agric Food Chem 53:2297–2306
  • Axling U, Olsson C, Xu J, Fernandez C, Larsson S, Strom K, Ahrne S, et al. 2012. Green tea powder and Lactobacillus plantarum affect gut microbiota, lipid metabolism and inflammation in high-fat fed C57BL/6J mice. Nutr Metab 9:105
  • Bell T, Newman JA, Silverman BW, Turner SL, Lilley AK. 2005. The contribution of species richness and composition to bacterial services. Nature 436:1157–1160
  • Berliner JA, Heinecke JW. 1996. The role of oxidized lipoproteins in atherogenesis. Free Radic Biol Med 20:707–727
  • Chen D, Yang Z, Chen X, Huang Y, Yin B, Guo F, Zhao H, et al. 2014. The effect of Lactobacillus rhamnosus hsryfm 1301 on the intestinal microbiota of a hyperlipidemic rat model. BMC Complement Altern Med 14:386
  • Chiang W, Cheng CY, Chiang MT, Chung KT. 2000. Effects of dehulled adlay on the culture count of some microbiota and their metabolism in the gastrointestinal tract of rats. J Agric Food Chem 48:829–832
  • Cho SH, Lee HR, Kim TB, Choi SW, Lee WJ, Choi Y. 2004. Effects of defatted safflower seed extract and phenolic compounds in diet on plasma and liver lipid in ovariectomized rats fed high-cholesterol diets. J Nutr Sci Vitaminol 50:32–37
  • Conlon MA, Bird AR. 2014. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7:17–44
  • Costabile A, Klinder A, Fava F, Napolitano A, Fogliano V, Leonard C, Gibson GR, Tuohy KM. 2008. Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: a double-blind, placebo-controlled, crossover study. Br J Nutr 99:110–120
  • Dean RT, Fu SL, Stocker R, Davies MJ. 1997. Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324:1–18
  • Duda-Chodak A. 2012. The inhibitory effect of polyphenols on human gut microbiota. J Physiol Pharmacol 63:497–503
  • Dupas C, Baglieri AM, Ordonaud C, Tome D, Maillard MN. 2006. Chlorogenic acid is poorly absorbed, independently of the food matrix: a Caco-2 cells and rat chronic absorption study. Mol Nutr Food Res 50:1053–1060
  • Etten EV. 2005. Multivariate analysis of ecological data using canoco. Austral Ecol 30:486–487
  • Etxeberria U, Fernández-Quintela A, Milagro FI, Aguirre L, Martínez JA, Portillo MP. 2013. Impact of polyphenols and polyphenol-rich dietary sources on gut microbiota composition. J Agric Food Chem 61:9517–9533
  • Feng ZM, Li TJ, Wu L, Xiao DF, Blachier F, Yin YL. 2015. Monosodium L-glutamate and dietary fat differently modify the composition of the intestinal microbiota in growing pigs. Obesity Facts 8:87–100
  • Ferris M, Muyzer G, Ward D. 1996. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol 62:340–346
  • Gao F, Tan J, Sun H, Yan J. 2014. Bacterial diversity of gut content in sea cucumber (Apostichopus japonicus) and its habitat surface sediment. J Ocean U China 13:303–310
  • Godard M, Décordé K, Ventura E, Soteras G, Baccou JC, Cristol JP, Rouanet JM. 2009. Polysaccharides from the green alga Ulva rigida improve the antioxidant status and prevent fatty streak lesions in the high cholesterol fed hamster, an animal model of nutritionally-induced atherosclerosis. Food Chem 115:176–180
  • Groth D, Hartmann S, Klie S, Selbig J. 2013. Principal components analysis. In: Reisfeld D, editor. Computational Toxicology. New York: Springer. p 527–547
  • Heavey PM, Rowland IR. 2004. Microbial-gut interactions in health and disease. Gastrointestinal cancer. Best Pract Res Clin Gastroenterol 18:323–336
  • Hervert-Hernández D, Goñi I. 2011. Dietary polyphenols and human gut microbiota: a review. Food Rev Int 27:154–169
  • Huang DW, Kuo YH, Lin FY, Lin YL, Chiang W. 2009. Effect of adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) Testa and its phenolic components on Cu2+-treated low-density lipoprotein (LDL) oxidation and lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophages. J Agric Food Chem 57:2259–2266
  • Huang S, Chen Y, Chiang W. 1994. Amino acids, fatty acids and proximate composition of the seed of adlay. J Food Sci 21:67–74
  • Jemai H, Fki I, Bouaziz M, Bouallagui Z, El Feki A, Isoda H, Sayadi S. 2008. Lipid-lowering and antioxidant effects of hydroxytyrosol and its triacetylated derivative recovered from olive tree leaves in cholesterol-fed rats. J Agric Food Chem 56:2630–2636
  • Kontush A. 2014. HDL-mediated mechanisms of protection in cardiovascular disease. Cardiovasc Res [Online] Available at: http://dx.doi.org/10.1093/cvr/cvu147. Accessed on 15 June 2014
  • Koren O, Spor A, Felin J, Fak F, Stombaugh J, Tremaroli V, Behre CJ, et al. 2011. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci USA 108:4592–4598
  • Leontowicz M, Jesion I, Leontowicz H, Park YS, Namiesnik J, Rombolaà AD, Weisz M, Gorinstein S. 2013. Health-promoting effects of ethylene-treated kiwifruit ‘Hayward’ from conventional and organic crops in rats fed an atherogenic diet. J Agric Food Chem 61:3661–3668
  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI. 2006. Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023
  • Marín L, Miguélez EM, Villar CJ, Lombó F. 2015. Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. BioMed Res Int 2015:1–18
  • Martinez I, Wallace G, Zhang C, Legge R, Benson AK, Carr TP, Moriyama EN, Walter J. 2009. Diet-induced metabolic improvements in a hamster model of hypercholesterolemia are strongly linked to alterations of the gut microbiota. Appl Environ Microbiol 75:4175–4184
  • Matsuki T, Watanabe K, Fujimoto J, Takada T, Tanaka R. 2004. Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Appl Environ Microb 70:7220–7228
  • Nishimura M, Ohkawara T, Kagami-Katsuyama H, Sekiguchi S, Taira T, Tsukada M, Shibata H, Nishihira J. 2014. Alteration of intestinal flora by the intake of enzymatic degradation products of adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) with improvement of skin condition. J Funct Foods 7:487–494
  • Peng XC, Li ST, Luo JM, Wu XY, Liu L. 2013. Effects of dietary fibers and their mixtures on short chain fatty acids and microbiota in mice guts. Food Funct 4:932–938
  • Tahri K, Crociani J, Ballongue J, Schneider F. 1995. Effects of three strains of Bifidobacteria on cholesterol. Lett Appl Microbiol 21:149–151
  • Tomás-Barberán FA, Andrés-Lacueva C. 2012. Polyphenols and health: current state and progress. J Agric Food Chem 60:8773–8775
  • Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI. 2008. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3:213–223
  • Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. 2009. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1:6ra14
  • Walsh CJ, Guinane CM, O’toole PW, Cotter PD. 2014. Beneficial modulation of the gut microbiota. FEBS Lett 588:4120–4130
  • Watanabe M, Kato M, Ayugase J. 2012. Anti-diabetic effects of adlay protein in type 2 diabetic db/db mice. Food Sci Technol Res 18:383–390
  • Yasir M, Angelakis E, Bibi F, Azhar E, Bachar D, Lagier J, Gaborit B, et al. 2015. Comparison of the gut microbiota of people in France and Saudi Arabia. Nutr Diabetes 5:e153
  • Yokozawa T, Nakagawa T, Kitani K. 2002. Antioxidative activity of green tea polyphenol in cholesterol-fed rats. J Agric Food Chem 50:3549–3552
  • Zhang C, Zhang M, Wang S, Han R, Cao Y, Hua W, Mao Y, et al. 2010. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. Isme J 4:232–241

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.