10
Views
13
CrossRef citations to date
0
Altmetric
Original Article

Solute Transport Process in Intestinal Epithelial Cells

Pages 339-365 | Published online: 09 Jul 2009

References

  • Armstrong W. McD., Byrd B. J., Cohen E. S., Cohen S. J., Hamang P. H., Myers C. J. Osmotically induced electrical changes in isolated bullfrog small intestine. Biochim. Biophys. Acta 1975; 401: 131
  • Armstrong W. McD., Byrd B. J., Hamang P. M. The Na+ gradient and D-galactose accumulation in epithelial cells of bullfrog small intestine. Biochim. Biophys. Acta 1973; 330: 237
  • Armstrong W. McD., Musselman D. L., Reitzug H. C. Sodium, potassium, and water content of isolated bullfrog small intestine epithelia. Am. J. Physiol. 1970; 219: 1023
  • Barry R. J. C., Eggenton J. Membrane potentials of epithelial cells in rat small intestine. J. Physiol. (Lond.) 1972; 277: 201
  • Barry R. J. C., Smyth D. H., Wright E. M. Short-circuit current and solute transfer by rat jejunum. J. Physiol. (Lond.) 1965; 181: 410
  • Christensen H. N., Riggs T. R. Concentrative uptake of amino acids by the Ehrlich mouse ascites carcinoma cell. J. Biol. Chem. 1952; 194: 57
  • Christensen H. N., Riggs T. R., Coyne B. A. Effects of pyridoxal and indoleacetate on cell uptake of amino acids and potassium. J. Biol. Chem. 1954; 209: 413
  • Christensen H. N., Riggs T. R., Fischer H., Palatine I. M. Amino acid concentration by a free cell neoplasm relation among amino acids. J. Biol. Chem. 1952; 198: 1
  • Crane R. K. Hypothesis of mechanism of intestinal active transport of sugars. Fed. Proc. 1962; 21: 891
  • Crane R. K. Na+-dependent transport in the intestine and other animal tissues. Fed. Proc. 1965; 24: 1000
  • Crane R. K. The gradient hypothesis and other models of carrier-mediated active transport. Rev. Physiol. Biochem. Pharmacol. 1977; 78: 99
  • Csáky T. Z., Esposito G. Osmotic swelling of intestinal epithelial cells during active sugar transport. Am. J. Physiol. 1969; 217: 753
  • Curran P. F., Schultz S. G., Chez R. A., Fuisz R. E. Kinetic relations of the Na-amino acid interaction at the mucosal border of intestine. J. Gen. Physiol. 1967; 50: 1261
  • Dinno M. A., Huang K. C. Effect of glucose and diuretics on intracellular potentials of mouse intestinal mucosa. Proc. Soc. Exp. Biol. Med. 1977; 155: 71
  • Eddy A. A. The effects of varying the cellular and the extracellular concentrations of sodium and potassium ions on the uptake of glycine by mouse ascites-tumor cells in the presence and absence of sodium cyanide. Biochem. J. 1968; 108: 489
  • Flagg J. L., Wilson T. H. Galactoside accumulation by Escherichia coli driven by a pH gradient. J. Bact. 1976; 125: 1235
  • Frizzell R. A., Schultz S. G. Ionic conductances of extracellular shunt pathway in rabbit ileum. Influence of shunt on transmural sodium transport and electrical potential differences. J. Gen. Physiol. 1972; 59: 318
  • Frömter E., Diamond J. Route of passive ion permeation in epithelia. Nature New Biol. 1972; 235: 9
  • Fujita M., Ohta H., Kawai K., Matsui H., Nakao M. Differential isolation of microvillous and basolateral plasma membranes from intestinal mucosa: Mutually exclusive distribution of digestive enzymes and ouabain-sensitive ATPase. Biochim. Biophys Acta 1972; 274: 336
  • Gilles-Baillien M., Schoffeniels E. Site of action of L-alanine and D-glucose on the potential difference across the intestine. Arch. Int. Physiol. Biochim. 1965; 73: 355
  • Goldner A. M., Schultz S. G., Curran P. F. Sodium and sugar fluxes across the mucosal border of rabbit ileum. J. Gen. Physiol. 1969; 53: 362
  • Hirschhorn N., Frazier H. S. The electrical profile of stripped, isolated rabbit ileum. Johns Hopkins Med. J. 1973; 132: 271
  • Hopfer U., Sigrist-Nelson K., Murer H. Intestinal sugar transport: Studies with isolated plasma membranes. Ann. N. Y. Acad. Sci. 1975; 264: 414
  • Hoshi T., Suzuki Y., Kawahara K. Voltage-dependence of charge transfer by organic solute/Na+ cotransport systems at the luminal membrane of Triturus proximal tubule. Abstracts of Symposium on Epithelial Transport Mechanism. 1978, (to be published in Membrane Biochemistry)
  • Kashket E. R., Wilson T. H. Proton-coupled accumulation of galactoside in Streptococcus lactis 7962. Proc. Natl. Acad. Sci. 1973; 70: 2866
  • Kimmich G. A., Carter-Su C., Randles J. Energetics on Na+-dependent sugar transport by isolated intestinal cells: Evidence for a major role for membrane potentials. Am. J. Physiol. 1977; 233: E357
  • Koopman W., Schultz S. G. The effect of sugars and amino acids on mucosal Na+ and K+ concentrations in rabbit ileum. Biochim. Biophys. Acta 1969; 173: 338
  • Lee C. O., Armstrong W. McD. Activities of sodium and potassium ions in epithelial cells of small intestine. Science 1972; 175: 1261
  • Lyon I., Sheerin H. E. Studies on transmural potentials in vitro in relation to intestinal absorption. VI. The effect of sugars on electrical potential profiles in jejunum and ileum. Biochim. Biophys. Acta 1971; 249: 1
  • Mullins L. J., Noda K. The influence of sodium-free solutions on the membrane potential of frog muscle fibers. J. Gen. Physiol. 1963; 47: 117
  • Murer H., Hopfer U. Demonstration of electrogenic Na+dependent D-glucose transport in intestinal brush border membranes. Proc. Natl. Acad. Sci. 1974; 71: 484
  • Murer H., Hopfer U., Kinne R. Sodium/proton antiport in brush-border membrane vesicles isolated from rat small intestine and kidney. Biochem. J. 1976; 154: 597
  • Murer H., Hopfer U., Kinne-Saffran E., Kinne R. Glucose transport in isolated brush border and lateral-basal plasma-membrane vesicles from intestinal epithelial cells. Biochim. Biophys. Acta 1974; 345: 170
  • Nellans H. N., Schultz S. G. Relations among trans-epithelial sodium transport, potassium exchange, and cell volume in rabbit ileum. J. Gen. Physiol. 1976; 68: 441
  • Okada Y., Inouye A. pH-Sensitive glass microelectrodes and intracellular pH measurements. Biophys. Struct. Mechanism 1976; 2: 21
  • Okada Y., Irimajiri A., Inouye A. Permeability properties and intracellular ion concentrations of epithelial cells in rat duodenum. Biochim. Biophys. Acta 1976a; 436: 15
  • Okada Y., Irimajiri A., Inouye A. Intracellular ion concentrations of epithelial cells in rat small intestine. Effects of external K+ and uphill transport of glucose and glycine. Jap. J. Physiol. 1976b; 24: 263
  • Okada Y., Irimajiri A., Inouye A. Electrical properties and active solute transport in rat small intestine. II. Conductive properties of transepithelial routes. J. Membrane Biol. 1977b; 31: 221
  • Okada Y., Irimajiri A., Tsuchiya W., Inouye A. Contribution of an electrogenic sodium pump to the membrane potential in the intestinal epithelial cell. Jap. J. Physiol. 1978; 28: 511
  • Okada Y., Sato T., Inouye A. Effects of potassium ions and sodium ions on membrane potential of epithelial cells in rat duodenum. Biochim. Biophys. Acta 1975; 413: 104
  • Okada Y., Tsuchiya W., Irimajiri A., Inouye A. Electrical properties and active solute transport in rat small intestine. I. Potential profile changes associated with sugar and amino acid transport. J. Membrane Biol. 1977a; 31: 205
  • Riggs T. R., Walker L. M., Christensen H. N. Potassium migration and amino acid transport. J. Biol. Chem. 1958; 233: 1479
  • Robinson R. A., Stokes R. H. Electrolyte Solutions. Butterworths, London 1959
  • Rose R. C., Nahrwold D. L., Koch M. J. Electrical potential profile in rabbit ileum: Role of rheogenic Na transport. Am. J. Physiol. 1977; 233: E5
  • Rose R. C., Schultz S. G. Studies on the electrical potential profile across rabbit ileum. Effects of sugars and amino acids on transmural and transmucosal electrical potential differences. J. Gen. Physiol. 1971; 57: 639
  • Schultz S. G. Sodium-coupled solute transport by small intestine: A status report. Am. J. Physiol. 1977; 233: E249
  • Schultz S. G. Is a coupled Na-K exchange “pump” involved in active transepithelial Na transport? A status report. Membrane Transport Process, J. F. Hoffman. Raven Press, New York 1978; Vol. 1
  • Schultz S. G., Curran P. F. Coupled transport of sodium and organic solutes. Physiol. Rev. 1970; 50: 637
  • Schultz S. G., Fuisz R. E., Curran P. F. Amino acid and sugar transport in rabbit ileum. J. Gen. Physiol. 1966; 49: 849
  • Schultz S. G., Zalusky R. Ion transport in isolated rabbit ileum. II. The interaction between active sodium and sugar transport. J. Gen. Physiol. 1964; 47: 1043
  • Stirling C. E. Radioautographic localization of sodium pump sites in rabbit intestine. J. Cell. Biol. 1972; 53: 704
  • West I. C. Lactose transport coupled to proton movements in Escherichia coli. Biochem. Biophys. Res. Commun. 1970; 41: 655
  • West I. C., Mitchell P. Stoichiometry of lactose-proton symport across the plasma membrane of Escherichia coli. Biochem. J. 1973; 132: 587
  • White J. F. Intracellular potassium activities in Amphiuma small intestine. Am. J. Physiol. 1976; 231: 1214
  • White J. F., Armstrong W. McD. Effect of transported solutes on membrane potentials in bullfrog small intestine. Am. J. Physiol. 1971; 221: 194
  • Wright E. M. The origin of the glucose dependent increase in the potential difference across the tortoise small intestine. J. Physiol. (Lond.) 1966; 183: 486

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.