3,005
Views
40
CrossRef citations to date
0
Altmetric
Thematic Issue: 52nd International Conference on the Bioscience of Lipids

Linking epigenetics to lipid metabolism: Focus on histone deacetylases

, , , , , , , , , & show all
Pages 257-266 | Received 18 Jun 2012, Accepted 29 Jul 2012, Published online: 24 Oct 2012

References

  • Alaynick WA. 2008. Nuclear receptors, mitochondria and lipid metabolism. Mitochondrion 8:329–337.
  • Antos CL, McKinsey TA, Dreitz M, Hollingsworth LM, Zhang CL, Schreiber K, 2003. Dose-dependent blockade to cardiomyocyte hypertrophy by histone deacetylase inhibitors. J Biol Chem 278:28930–28937.
  • Boulias K, Talianidis I. 2004. Functional role of G9a-induced histone methylation in small heterodimer partner-mediated transcriptional repression. Nucleic Acids Res 32:6096–6103.
  • Cao DJ, Wang ZV, Battiprolu PK, Jiang N, Morales CR, Kong Y, 2011. Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proc Natl Acad Sci USA 108:4123–4128.
  • Cantó C, Auwerx J. 2010. AMP-activated protein kinase and its downstream transcriptional pathways. Cell Mol Life Sci 67:3407–3423.
  • Choi JH, Banks AS, Estall JL, Kajimura S, Bostrom P, Laznik D, 2010. Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARγ by Cdk5. Nature 466:451–456.
  • Czubryt MP, McAnally J, Fishman GI, Olson EN. 2003. Regulation of peroxisome proliferator activated receptor gamma coactivator 1α (PGC-1α) and mitochondrial function by MEF2 and HDAC5. Proc Natl Acad Sci USA 100:1711–1716.
  • Dawson MA, Kouzarides T. 2012. Cancer Epigenetics: From mechanism to therapy. Cell 150:12–27.
  • De Fabiani E, Mitro N, Anzulovich AC, Pinelli A, Galli G, Crestani M. 2001. The negative effects of bile acids and tumor necrosis factor-α on the transcription of cholesterol 7α-hydroxylase gene (CYP7A1) converge to hepatic nuclear factor-4: A novel mechanism of feedback regulation of bile acid synthesis mediated by nuclear receptors. J Biol Chem 276:30708–30716.
  • De Fabiani E, Mitro N, Gilardi F, Caruso D, Galli G, Crestani M. 2003. Coordinated control of cholesterol catabolism to bile acids and of gluconeogenesis via a novel mechanism of transcription regulation linked to the fasted-to-fed cycle. J Biol Chem 278:39124–39132.
  • Dompierre JP, Godin JD, Charrin BC, Cordelieres FP, King SJ, Humbert S, 2007. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation. J Neurosci 27:3571–3583.
  • Donohoe DR, Garge N, Zhang X, Sun W, O'Connell TM, Bunger MK, 2011. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 13:517–526.
  • Evans RM, Barish GD, Wang YX. 2004. PPARs and the complex journey to obesity. Nat Med 10:355–361.
  • Fang S, Miao J, Xiang L, Ponugoti B, Treuter E, Kemper JK. 2007. Coordinated recruitment of histone methyltransferase G9a and other chromatin-modifying enzymes in SHP-mediated regulation of hepatic bile acid metabolism. Mol Cell Biol 27:1407–1424.
  • Feng D, Liu T, Sun Z, Bugge A, Mullican SE, Alenghat T, 2011. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331:1315–1319.
  • Finkel T, Deng CX, Mostoslavsky R. 2009. Recent progress in the biology and physiology of sirtuins. Nature 460:587–591.
  • Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, 2009. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58:1509–1517.
  • Goodwin B, Jones SA, Price RR, Watson MA, McKee DD, Moore LB, 2000. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell 6:517–526.
  • Gray SG, Ekstrom TJ. 2001. The human histone deacetylase family. Exp Cell Res 262:75–83.
  • Guarente L. 2006. Sirtuins as potential targets for metabolic syndrome. Nature 444:868–874.
  • Gupta MP, Samant SA, Smith SH, Shroff SG. 2008. HDAC4 and PCAF bind to cardiac sarcomeres and play a role in regulating myofilament contractile activity. J Biol Chem 283:10135–10146.
  • Haberland M, Montgomery RL, Olson EN. 2009. The many roles of histone deacetylases in development and physiology: Implications for disease and therapy. Nat Rev Genet 10:32–42.
  • Haeusler RA, Kaestner KH, Accili D. 2010. FoxOs function synergistically to promote glucose production. J Biol Chem 285:35245–35248.
  • Handschin C, Spiegelman BM. 2006. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 27:728–735.
  • Imai T, Takakuwa R, Marchand S, Dentz E, Bornert JM, Messaddeq N, 2004. Peroxisome proliferator-activated receptor gamma is required in mature white and brown adipocytes for their survival in the mouse. Proc Natl Acad Sci USA 101:4543–4547.
  • Kemper JK, Kim H, Miao J, Bhalla S, Bae Y. 2004. Role of an mSin3A-Swi/Snf chromatin remodeling complex in the feedback repression of bile acid biosynthesis by SHP. Mol Cell Biol 24:7707–7719.
  • Kerr TA, Saeki S, Schneider M, Schaefer K, Berdy S, Redder T, 2002. Loss of nuclear receptor SHP impairs but does not eliminate negative feedback regulation of bile acid synthesis. Dev Cell 2:713–720.
  • Knutson SK, Chyla BJ, Amann JM, Bhaskara S, Huppert SS, Hiebert SW. 2008. Liver-specific deletion of histone deacetylase 3 disrupts metabolic transcriptional networks. EMBO J 27:1017–1028.
  • Lahm A, Paolini C, Pallaoro M, Nardi MC, Jones P, Neddermann P, 2004. Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proc Natl Acad Sci USA 104:17335–17340.
  • Li G, Jiang H, Chang M, Xie H, Hu L. 2011. HDAC6 α-tubulin deacetylase: A potential therapeutic target in neurodegenerative diseases. J Neurol Sci 304:1–8.
  • Li P, Fan W, Xu J, Lu M, Yamamoto H, Auwerx J, 2011. Adipocyte NCoR knockout decreases PPARg phosphorylation and enhances PPARγ activity and insulin sensitivity. Cell 147:815–826.
  • Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, 2002. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418:797–801.
  • López-Rodas G, Brosch G, Georgieva EI, Sendra R, Franco L, Loidl P. 1993. Histone deacetylase. A key enzyme for the binding of regulatory proteins to chromatin. FEBS Lett 317:175–180.
  • Lu J, McKinsey TA, Nicol RL, Olson EN. 2000. Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc Natl Acad Sci USA 97:4070–4075.
  • Lu TT, Makishima M, Repa JJ, Schoonjans K, Kerr TA, Auwerx J, 2000. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell 6:507–515.
  • Matsumoto M, Pocai A, Rossetti L, Depinho RA, Accili D. 2007. Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metab 6:208–216.
  • McGee SL, van Denderen BJ, Howlett KF, Mollica J, Schertzer JD, Kemp BE, 2008. AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes 57:860–867.
  • McKinsey TA. 2012. Therapeutic potential for HDAC inhibitors in the heart. Annu Rev Pharmacol Toxicol 10:303–319.
  • McKinsey TA, Zhang CL, Olson EN. 2001. Identification of a signal-responsive nuclear export sequence in class II histone deacetylases. Mol Cell Biol 21:6312–6321.
  • McKinsey TA, Zhang CL, Lu J, Olson EN. 2000. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408:106–111.
  • Mihaylova MM, Vasquez DS, Ravnskjaer K, Denechaud PD, Yu RT, Alvarez JG, 2011. Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145:607–621.
  • Miremadi A, Oestergaard MZ, Pharoah PD, Caldas C. 2007. Cancer genetics of epigenetic genes. Hum Mol Genet 16:28–49.
  • Mitro N, Godio C, De Fabiani E, Scotti E, Galmozzi A, Gilardi F, 2007. Insights in the regulation of cholesterol 7α-hydroxylase gene reveal a target for modulating bile acid synthesis. Hepatology 46:885–897.
  • Nerup J, Pociot F. 2001. A genome wide scan for type 1-diabetes susceptibility in Scandinavian families: Identification of new loci with evidence of interactions. Am J Hum Genet 69:1301–1313.
  • Outeiro TF, Kontopoulos E, Altmann SM, Kufareva I, Strathearn KE, Amore AM, 2007. Sirtuin 2 inhibitors rescue α-synuclein-mediated toxicity in models of Parkinson's disease. Science 317:516–519.
  • Passier R, Zeng H, Frey N, Naya FJ, Nicol RL, McKinsey TA, 2000. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J Clin Invest 105:1395–1406.
  • Perissi V, Jepsen K, Glass CK, Rosenfeld MG. 2010. Deconstructing repression evolving models of co-repressor action. Nat Rev Genet 11:109–123.
  • Potthoff MJ, Wu H, Arnold MA, Shelton JM, Backs J, McAnally J, 2007. Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers. J Clin Invest 117:2459–2467.
  • Pullinger CR, Eng C, Salen G, Shefer S, Batta AK, Erickson SK, 2002. Human cholesterol 7α-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype. J Clin Invest 110:109–117.
  • Rajendran P, Ho E, Williams DE, Dashwood RH. 2011. Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells. Clin Epigenetics 3:1–23.
  • Rangwala SM, Lazar MA. 2004. Peroxisome proliferator-activated receptor gamma in diabetes and metabolism. Trends Pharmacol Sci 25:331–336.
  • Richards EJ, Elgin SCR. 2002. Epigenetic codes for heterochromatin formation and silencing: Rounding up the usual suspects. Cell 108:489–500.
  • Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. 2005. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434:113–118.
  • Rodgers JT, Puigserver P. 2007. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc Natl Acad Sci USA 104:12861–12866.
  • Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA, 2005. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310:1642–1646.
  • Sun Z, Singh N, Mullican SE, Everett LJ, Li L, Yuan L, 2011. Diet-induced lethality due to deletion of the Hdac3 gene in heart and skeletal muscle. J Biol Chem 286:33301–33309.
  • Tontonoz P, Spiegelman BM. 2008. Fat and beyond: The diverse biology of PPARγ. Ann Rev Biochem 77:289–312.
  • Vaillant I, Paszkowski J. 2007. Role of histone and DNA methylation in gene regulation. Curr Opin Plant Biol 10:528–533.
  • Vega RB, Harrison BC, Meadows E, Roberts CR, Papst PJ, Olson EN, 2004. Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol 24:8374–8385.
  • Viollet B, Guigas B, Leclerc J, Hebrard S, Lantier L, Mounier R, 2009. AMP-activated protein kinase in the regulation of hepatic energy metabolism: From physiology to therapeutic perspectives. Acta Physiol 196:81–98.
  • Wang L, Lee YK, Bundman D, Han Y, Thevananther S, Kim CS, 2002. Redundant pathways for negative feedback regulation of bile acid production. Dev Cell 2:721–731.
  • Weems JC, Griesel BA, Olson AL. 2012. Class II histone deacetylases downregulate GLUT4 transcription in response to increased cAMP signaling in cultured adipocytes and fasting mice. Diabetes 61:1404–1414.
  • Xiang K, Wang Y, Zheng T, Jia W, Li J, Chen L, 2004. Genome-wide search for type 2 diabetes/impaired glucose homeostasis susceptibility genes in the Chinese: Significant linkage to chromosome 6q21-q23 and chromosome 1q21-q24. Diabetes 53:228–234.
  • Yamamoto H, Williams EG, Mouchiroud L, Cantó C, Fan W, Downes M, 2011. NCoR1 is a conserved physiological modulator of muscle mass and oxidative function. Cell 147:827–839.
  • Yin L, Lazar MA. 2005. The orphan nuclear receptor Rev-erbα recruits the N-CoR/histone deacetylase3 corepressor to regulate the circadian Bmal1 gene. Mol Endocrinol 19:1452–1459.
  • Yu S, Matsusue K, Kashireddy P, Cao WQ, Yeldandi V, Yeldandi AV, 2003. Adipocyte-specific gene expression and adipogenicsteatosis in the mouse liver due to peroxisome proliferator-activated receptor γ1 (PPARγ1) overexpression. J Biol Chem 278:498–505.
  • Yu C, Markan K, Temple KA, Deplewski D, Brady MJ, Cohen RN. 2005. The nuclear receptor corepressors NCoR and SMRT decrease peroxisome proliferator-activated receptor gamma transcriptional activity and repress 3T3-L1 adipogenesis. J Biol Chem 280:13600–13605.
  • Zamir I, Harding HP, Atkins GB, Hörlein A, Glass CK, Rosenfeld MG, 1996. A nuclear hormone receptor corepressor mediates transcriptional silencing by receptors with distinct repression domains. Mol Cell Biol 16:5458–5465.
  • Zhang YL, Hernandez-Ono A, Siri P, Weisberg S, Conlon D, Graham MJ, 2006. Aberrant hepatic expression of PPARγ2 stimulates hepatic lipogenesis in a mouse model of obesity, insulin resistance, dyslipidemia, and hepatic steatosis. J Biol Chem 281:37603–37615.
  • Zhao X, Sternsdorf T, Bolger TA, Evans RN, Yao TP, 2005. Regulation of MEF2 by histone deacetylase 4- and SIRT deacetylase mediated lysine modifications. Mol Cell Biol 25:8456–8464.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.