7,622
Views
126
CrossRef citations to date
0
Altmetric
Review Article

The Sec translocon mediated protein transport in prokaryotes and eukaryotes

, , , , &
Pages 58-84 | Received 10 Dec 2013, Accepted 10 Mar 2014, Published online: 24 Apr 2014

References

  • Abell BM, Pool MR, Schlenker O, Sinning I, High S. 2004. Signal recognition particle mediates post-translational targeting in eukaryotes. EMBO J 23:2755–2764
  • Aebi M, Bernasconi R, Clerc S, Molinari M. 2010. N-glycan structures: Recognition and processing in the ER. Trends Biochem Sci 35:74–82
  • Aebi M, Schuldiner M, Schwappach B. 2013. N-linked protein glycosylation in the ER. Biochim Biophys Acta – Mol Cell Res 1833:2430–2437
  • Akita M, Sasaki S, Matsuyama S, Mizushima S. 1990. SecA interacts with secretory proteins by recognizing the positive charge at the amino terminus of the signal peptide in Escherichia coli. J Biol Chem 265:8164–8169
  • Akopian D, Dalal K, Shen K, Duong F, Shan S-o. 2013a. SecYEG activates GTPases to drive the completion of cotranslational protein targeting. J Cell Biol 200:397–405
  • Akopian D, Shen K, Zhang X, Shan S-o. 2013b. Signal recognition particle: An essential protein-targeting machine. Annu Rev Biochem 82:693–721
  • Alami M, Dalal K, Lelj-Garolla B, Sligar SG, Duong F. 2007. Nanodiscs unravel the interaction between the SecYEG channel and its cytosolic partner SecA. EMBO J 26:1995–2004
  • Albiniak AM, Baglieri J, Robinson C. 2012. Targeting of lumenal proteins across the thylakoid membrane. J Experim Bot 63:1689–1698
  • Alder NN, Shen Y, Brodsky JL, Hendershot LM, Johnson AE. 2005. The molecular mechanisms underlying BiP-mediated gating of the Sec61 translocon of the endoplasmic reticulum. J Cell Biol 168:389–399
  • Ampofo E, Welker S, Jung M, Müller L, Greiner M, Zimmermann R, Montenarh M. 2013. CK2 phosphorylation of human Sec63 regulates its interaction with Sec62. Biochim Biophys Acta – Gen Subj 1830:2938–2945
  • Angelini S, Boy D, Schiltz E, Koch HG. 2006. Membrane binding of the bacterial signal recognition particle receptor involves two distinct binding sites. J Cell Biol 174:715–724
  • Angelini S, Deitermann S, Koch HG. 2005. FtsY, the bacterial signal-recognition particle receptor, interacts functionally and physically with the SecYEG translocon. EMBO Rep 6:476–481
  • Antonin W, Meyer HA, Hartmann E. 2000. Interactions between Spc2p and other components of the endoplasmic reticulum translocation sites of the yeast Saccharomyces cerevisiae. J Biol Chem 275:34068–34072
  • Antonoaea R, Fürst M, Nishiyama K-i, Müller M. 2008. The periplasmic chaperone PpiD interacts with secretory proteins exiting from the SecYEG translocon. Biochemistry 47:5649–5656
  • Ast T, Cohen G, Schuldiner M. 2013. A network of cytosolic factors targets SRP-independent proteins to the endoplasmic reticulum. Cell 152:1134–1145
  • Ataide SF, Schmitz N, Shen K, Ke A, Shan SO, Doudna JA, Ban N. 2011. The crystal structure of the signal recognition particle in complex with its receptor. Science 331:881–886
  • Auclair SM, Bhanu MK, Kendall DA. 2012. Signal peptidase I: Cleaving the way to mature proteins. Protein Sci 21:13–25
  • Bacher G, Lutcke H, Jungnickel B, Rapoport TA, Dobberstein B. 1996. Regulation by the ribosome of the GTPase of the signal-recognition particle during protein targeting. Nature 381:248–251
  • Bahari L, Parlitz R, Eitan A, Stjepanovic G, Bochkareva ES, Sinning I, Bibi E. 2007. Membrane Targeting of ribosomes and their release require distinct and separable functions of FtsY. J Biol Chem 282:32168–32175
  • Baker JL, Celik E, DeLisa MP. 2013. Expanding the glycoengineering toolbox: The rise of bacterial N-linked protein glycosylation. Trends Biotechnol 31:313–323
  • Bange G, Sinning I. 2013. SIMIBI twins in protein targeting and localization. Nat Struct Mol Biol 20:776–780
  • Baram D, Pyetan E, Sittner A, Auerbach-Nevo T, Bashan A, Yonath A. 2005. Structure of trigger factor binding domain in biologically homologous complex with eubacterial ribosome reveals its chaperone action. Proc Natl Acad Sci USA 102:12017–12022
  • Beck K, Eisner G, Trescher D, Dalbey RE, Brunner J, Muller M, Müller M. 2001. YidC, an assembly site for polytopic Escherichia coli membrane proteins located in immediate proximity to the SecYE translocon and lipids. EMBO Rep 2:709–714
  • Beck K, Wu L-F, Brunner J, Muller M. 2000. Discrimination between SRP- and SecA/SecB-dependent substrates involves selective recognition of nascent chains by SRP and trigger factor. EMBO J 19:134–143
  • Becker T, Bhushan S, Jarasch A, Armache J-P, Funes S, Jossinet F, et al. 2009. Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science 326:1369–1373
  • Beha D, Deitermann S, Muller M, Koch HG. 2003. Export of beta-lactamase is independent of the signal recognition particle. J Biol Chem 278:22161–22167
  • Behrens C, Hartmann E, Kalies KU. 2013. Single rRNA helices bind independently to the protein-conducting channel SecYEG. Traffic 14:274–281
  • Benedix J, Lajoie P, Jaiswal H, Burgard C, Greiner M, Zimmermann R, et al. 2010. BiP modulates the affinity of its co-chaperone ERj1 for ribosomes. J Biol Chem 285:36427–36433
  • Berndt U, Oellerer S, Zhang Y, Johnson AE, Rospert S. 2009. A signal-anchor sequence stimulates signal recognition particle binding to ribosomes from inside the exit tunnel. Proc Natl Acad Sci USA 106:1398–1403
  • Bernstein HD, Zopf D, Freymann DM, Walter P. 1993. Functional substitution of the signal recognition particle 54-kDa subunit by its Escherichia coli homolog. Proc Natl Acad Sci USA 90:5229–5233
  • Bibi E. 2011. Early targeting events during membrane protein biogenesis in Escherichia coli. Biochim Biophys Acta – Biomembr 1808:841–850
  • Bibi E. 2012. Is there a twist in the Escherichia coli signal recognition particle pathway? Trends Biochem Sci 37:1–6
  • Bieker KL, Silhavy TJ. 1990. The genetics of protein secretion in E. coli. Trends Genet 6:329–334
  • Bingel-Erlenmeyer R, Kohler R, Kramer G, Sandikci A, Antolic S, Maier T, et al. 2008. A peptide deformylase-ribosome complex reveals mechanism of nascent chain processing. Nature 452:108–111
  • Blau M, Mullapudi S, Becker T, Dudek J, Zimmermann R, Penczek PA, Beckmann R. 2005. ERj1p uses a universal ribosomal adaptor site to coordinate the 80S ribosome at the membrane. Nat Struct Mol Biol 12:1015–1016
  • Blobel G, Sabatini DD. 1970. Controlled proteolysis of nascent polypeptides in rat liver cell fractions. I. Location of the polypeptides within ribosomes. J Cell Biol 45:130–145
  • Bogdanov M, Dowhan W. 1998. Phospholipid-assisted protein folding: Phosphatidylethanolamine is required at a late step of the conformational maturation of the polytopic membrane protein lactose permease. EMBO J 17:5255–5264
  • Bogdanov M, Dowhan W. 2012. Lipid-dependent generation of dual topology for a membrane protein. J Biol Chem 287:37939–37948
  • Bogdanov M, Sun J, Kaback HR, Dowhan W. 1996. A phospholipid acts as a chaperone in assembly of a membrane transport protein. J Biol Chem 271:11615–11618
  • Boisramé A, Chasles M, Babour A, Beckerich J-M, Gaillardin C. 2002. Sbh1p, a subunit of the Sec61 translocon, interacts with the chaperone calnexin in the yeast Yarrowia lipolytica. J Cell Sci 115:4947–4956
  • Bornemann T, Jöckel J, Rodnina MV, Wintermeyer W. 2008. Signal sequence-independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel. Nat Struct Mol Biol 15:494–499
  • Braig D, Bär C, Thumfart J-O, Koch HG. 2009. Two cooperating helices constitute the lipid-binding domain of the bacterial SRP receptor. J Mol Biol 390:401–413
  • Braig D, Mircheva M, Sachelaru I, van der Sluis EO, Sturm L, Beckmann R, Koch HG. 2011. Signal sequence-independent SRP-SR complex formation at the membrane suggests an alternative targeting pathway within the SRP cycle. Mol Cell Biol 22:2309–2323
  • Brodsky JL, Goeckeler J, Schekman R. 1995. BiP and Sec63p are required for both co- and posttranslational protein translocation into the yeast endoplasmic reticulum. Proc Natl Acad Sci USA 92:9643–9646
  • Broude NE. 2011. Analysis of RNA localization and metabolism in single live bacterial cells: Achievements and challenges. Mol Microbiol 80:1137–1147
  • Brundage L, Hendrick JP, Schiebel E, Driessen AJM, Wickner W. 1990. The purified E. coli integral membrane protein SecYE is sufficient for reconstitution of SecA-dependent precursor protein translocation. Cell 62:649–657
  • Burda P, Aebi M. 1999. The dolichol pathway of N-linked glycosylation. Biochim Biophys Acta – Gen Subj 1426:239–257
  • Calo D, Eichler J. 2011. Crossing the membrane in Archaea, the third domain of life. Biochim Biophys Acta – Biomembr 1808:885–891
  • Cao TB, Saier MH Jr. 2003. The general protein secretory pathway: phylogenetic analyses leading to evolutionary conclusions. Biochim Biophys Acta – Biomembr 1609:115–125
  • Castanié-Cornet M-P, Bruel N, Genevaux P. 2013. Chaperone networking facilitates protein targeting to the bacterial cytoplasmic membrane. Biochim Biophys Acta – Mol Cell Res. doi: 10.1016/j.bbamcr.2013.11.007
  • Chang CN, Blobel G, Model P. 1978. Detection of prokaryotic signal peptidase in an Escherichia coli membrane fraction: Endoproteolytic cleavage of nascent f1 pre-coat protein. Proc Natl Acad Sci USA 75:361–365
  • Chavan M, Yan A, Lennarz WJ. 2005. Subunits of the translocon interact with components of the oligosaccharyl transferase complex. J Biol Chem 280:22917–22924
  • Chen M, Xie K, Jiang F, Yi L, Dalbey REE. 2002. YidC, a newly defined evolutionarily conserved protein, mediates membrane protein assembly in bacteria. Biol Chem 383:1565–1572
  • Chen R, Henning U. 1996. A periplasmic protein (Skp) of Escherichia coli selectively binds a class of outer membrane proteins. Mol Microbiol 19:1287–1294
  • Chen W, Helenius J, Braakman I, Helenius A. 1995. Cotranslational folding and calnexin binding during glycoprotein synthesis. Proc Natl Acad Sci USA 92:6229–6233
  • Cheng Z, Jiang Y, Mandon EC, Gilmore R. 2005. Identification of cytoplasmic residues of Sec61p involved in ribosome binding and cotranslational translocation. J Cell Biol 168:67–77
  • Chirico WJ, Waters MG, Blobel G. 1988. 70K heat shock related proteins stimulate protein translocation into microsomes. Nature 332:805–810
  • Clemons WM, Ménétret J-F, Akey CW, Rapoport TA. 2004. Structural insight into the protein translocation channel. Curr Opin Struct Biol 14:390–396
  • Cline K, Dabney-Smith C. 2008. Plastid protein import and sorting: Different paths to the same compartments. Curr Opin Plant Biol 11:585–592
  • Cross BC, High S. 2009. Dissecting the physiological role of selective transmembrane-segment retention at the ER translocon. J Cell Sci 122:1768–1777
  • Cunningham K, Lill R, Crooke E, Rice M, Moore K, Wickner W, Oliver D. 1989. SecA protein, a peripheral protein of the Escherichia coli plasma membrane, is essential for the functional binding and translocation of proOmpA. EMBO J 8:955–959
  • Czaplinski K, Singer RH. 2006. Pathways for mRNA localization in the cytoplasm. Trends Biochem Sci 31:687–693
  • Dalal K, Nguyen N, Alami M, Tan J, Moraes TF, Lee WC, et al. 2009. Structure, binding, and activity of Syd, a SecY-interacting protein. J Biol Chem 284:7897–7902
  • Dalbey RE, Lively MO, Bron S, Dijl JMV. 1997. The chemistry and enzymology of the type I signal peptidases. Protein Sci 6:1129–1138
  • Dalbey RE, Wang P, Kuhn A. 2011. Assembly of bacterial inner membrane proteins. Annu Rev Biochem 80:161–187
  • Dalbey RE, Wang P, van Dijl JM. 2012. Membrane proteases in the bacterial protein secretion and quality control pathway. Microbiol Mol Biol Rev 76:311–330
  • Daley DO, Rapp M, Granseth E, Melén K, Drew D, von Heijne G. 2005. Global topology analysis of the Escherichia coli inner membrane proteome. Science 308:1321–1323
  • Dartigalongue C, Raina S. 1998. A new heat-shock gene, ppiD, encodes a peptidyl-prolyl isomerase required for folding of outer membrane proteins in Escherichia coli. EMBO J 17:3968–3980
  • de Cook H, Tommassen J. 1991. Conservation of components of the Escherichia coli export machinery in prokaryotes. FEMS Microbiol Lett 80:195–199
  • de Gier J-WL, Mansournia P, Valent QA, Phillips GJ, Luirink J, von Heijne G. 1996. Assembly of a cytoplasmic membrane protein in Escherichia coli is dependent on the signal recognition particle. FEBS Lett 399:307–309
  • de Vrije T, de Swart RL, Dowhan W, Tommassen J, de Kruijff B. 1988. Phosphatidylglycerol is involved in protein translocation across Escherichia coli inner membranes. Nature 334:173–175
  • Deitermann S, Sprie GS, Koch HG. 2005. A dual function for SecA in the assembly of single spanning membrane proteins in Escherichia coli. J Biol Chem 280:39077–39085
  • Demirci E, Junne T, Baday S, Bernèche S, Spiess M. 2013. Functional asymmetry within the Sec61p translocon. Proc Natl Acad Sci USA 110:18856–18861
  • Denic V, Dotsch V, Sinning I. 2013. Endoplasmic reticulum targeting and insertion of tail-anchored membrane proteins by the GET pathway. Cold Spring Harb Perspect Biol 5:a013334
  • Deshaies RJ, Koch BD, Werner-Washburne M, Craig EA, Schekman R. 1988. A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 332:800–805
  • Deshaies RJ, Sanders SL, Feldheim DA, Schekman R. 1991. Assembly of yeast Sec proteins involved in translocation into the endoplasmic reticulum into a membrane-bound multisubunit complex. Nature 349:806–808
  • Deshaies RJ, Schekman R. 1987. A yeast mutant defective at an early stage in import of secretory protein precursors into the endoplasmic reticulum. J Cell Biol 105:633–645
  • Deshaies RJ, Schekman R. 1989. SEC62 encodes a putative membrane protein required for protein translocation into the yeast endoplasmic reticulum. J Cell Biol 109:2653–2664
  • Deuerling E, Patzelt H, Vorderwülbecke S, Rauch T, Kramer G, Schaffitzel E, et al. 2003. Trigger factor and DnaK possess overlapping substrate pools and binding specificities. Mol Microbiol 47:1317–1328
  • Deville K, Gold VAM, Robson A, Whitehouse S, Sessions RB, Baldwin SA, et al. 2011. The oligomeric state and arrangement of the active bacterial translocon. J Biol Chem 286:4659–4669
  • Dierks T, Volkmer J, Schlenstedt G, Jung C, Sandholzer U, Zachmann K, et al. 1996. A microsomal ATP-binding protein involved in efficient protein transport into the mammalian endoplasmic reticulum. EMBO J 15:6931–6942
  • Douville K, Price A, Eichler J, Economou A, Wickner W. 1995. SecYEG and SecA are the stoichiometric components of preprotein translocase. J Biol Chem 270:20106–20111
  • Dowhan W, Bogdanov M. 2009. Lipid-dependent membrane protein topogenesis. Annu Rev Biochem 78:515–540
  • Drew D, Fröderberg L, Baars L, de Gier J-WL. 2003. Assembly and overexpression of membrane proteins in Escherichia coli. Biochim Biophys Acta – Biomembr 1610:3–10
  • Driessen AJ, Wickner W. 1991. Proton transfer is rate-limiting for translocation of precursor proteins by the Escherichia coli translocase. Proc Natl Acad Sci USA 88:2471–2475
  • Driessen AJM, Nouwen N. 2008. Protein translocation across the bacterial cytoplasmic membrane. Annu Rev Biochem 77:643–667
  • Dudek J, Greiner M, Muller A, Hendershot LM, Kopsch K, Nastainczyk W, Zimmermann R. 2005. ERj1p has a basic role in protein biogenesis at the endoplasmic reticulum. Nat Struct Mol Biol 12:1008–1014
  • Dudek J, Volkmer J, Bies C, Guth S, Muller A, Lerner M, et al. 2002. A novel type of co-chaperone mediates transmembrane recruitment of DnaK-like chaperones to ribosomes. EMBO J 21:2958–2967
  • Dünnwald M, Varshavsky A, Johnsson N. 1999. Detection of transient in vivo interactions between substrate and transporter during protein translocation into the endoplasmic reticulum. Mol Cell Biol 10:329–344
  • Duong F, Wickner W. 1997a. The SecDFyajC domain of preprotein translocase controls preprotein movement by regulating SecA membrane cycling. EMBO J 16:4871–4879
  • Duong F, Wickner W. 1997b. Distinct catalytic roles of the SecYE, SecG and SecDFyajC subunits of preprotein translocase holoenzyme. EMBO J 16:2756–2768
  • Egea PF, Napetschnig J, Walter P, Stroud RM. 2008. Structures of SRP54 and SRP19, the two proteins that organize the ribonucleic core of the signal recognition particle from Pyrococcus furiosus. PLoS One 3:e3528
  • Egea PF, Shan SO, Napetschnig J, Savage DF, Walter P, Stroud RM. 2004. Substrate twinning activates the signal recognition particle and its receptor. Nature 427:215–221
  • Egea PF, Stroud RM. 2010. Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes. Proc Natl Acad Sci USA 107:17182–17187
  • Eichler J. 2003. Evolution of the prokaryotic protein translocation complex: A comparison of archaeal and bacterial versions of SecDF. Mol Phylogen Evol 27:504–509
  • Eitan A, Bibi E. 2004. The core Escherichia coli signal recognition particle receptor contains only the N and G domains of FtsY. J Bacteriol 186:2492–2494
  • Emr SD, Hanley-Way S, Silhavy TJ. 1981. Suppressor mutations that restore export of a protein with a defective signal sequence. Cell 23:79–88
  • Enquist K, Fransson M, Boekel C, Bengtsson I, Geiger K, Lang L, et al. 2009. Membrane-integration characteristics of two ABC transporters, CFTR and P-glycoprotein. J Mol Biol 387:1153–1164
  • Epand RM, Epand RF. 2011. Functional consequences of the lateral organization of biological membranes. In: Yeagle PL, ed. The Structure of Biological Membranes, 3rd ed. Boca Raton, FL: CRC Press
  • Erdmann F, Schäuble N, Lang S, Jung M, Honigmann A, Ahmad M, et al. 2011. Interaction of calmodulin with Sec61α limits Ca2+ leakage from the endoplasmic reticulum. EMBO J 30:17–31
  • Erlandson KJ, Miller SBM, Nam Y, Osborne AR, Zimmer J, Rapoport TA. 2008. A role for the two-helix finger of the SecA ATPase in protein translocation. Nature 455:984–987
  • Facey SJ, Neugebauer SA, Krauss S, Kuhn A. 2007. The mechanosensitive channel protein MscL is targeted by the SRP to the novel YidC membrane insertion pathway of Escherichia coli. J Mol Biol 365:995–1004
  • Fang H, Green N. 1994. Nonlethal sec71-1 and sec72-1 mutations eliminate proteins associated with the Sec63p-BiP complex from S. cerevisiae. Mol Cell Biol 5:933–942
  • Fekkes P, De Wit JG, Van Der Wolk JPW, Kimsey HH, Kumamoto CA, Driessen AJM. 1998. Preprotein transfer to the Escherichia coli translocase requires the co-operative binding of SecB and the signal sequence to SecA. Mol Microbiol 29:1179–1190
  • Feldheim D, Yoshimura K, Admon A, Schekman R. 1993. Structural and functional characterization of Sec66p, a new subunit of the polypeptide translocation apparatus in the yeast endoplasmic reticulum. Mol Cell Biol 4:931–939
  • Ferbitz L, Maier T, Patzelt H, Bukau B, Deuerling E, Ban N. 2004. Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 431:590–596
  • Finke K, Plath K, Panzner S, Prehn S, Rapoport TA, Hartmann E, Sommer T. 1996. A second trimeric complex containing homologs of the Sec61p complex functions in protein transport across the ER membrane of S. cerevisiae. EMBO J 15:1482–1494
  • Flanagan JJ, Chen JC, Miao Y, Shao Y, Lin J, Bock PE, Johnson AE. 2003. Signal recognition particle binds to ribosome-bound signal sequences with fluorescence-detected subnanomolar affinity that does not diminish as the nascent chain lengthens. J Biol Chem 278:18628–18637
  • Flourakis M, Van Coppenolle F, Lehen’kyi Vy, Beck B, Skryma R, Prevarskaya N. 2006. Passive calcium leak via translocon is a first step for iPLA2-pathway regulated store operated channels activation. FASEB J 20:1215–1217
  • Flower AM. 2001. SecG function and phospholipid metabolism in Escherichia coli. J Bacteriol 183:2006–2012
  • Flower AM, Hines LL, Pfennig PL. 2000. SecG is an auxiliary component of the protein export apparatus of Escherichia coli. Mol Gen Genet 263:131–136
  • Focia PJ, Shepotinovskaya IV, Seidler JA, Freymann DM. 2004. Heterodimeric GTPase core of the SRP targeting complex. Science 303:373–377
  • Fons RD, Bogert BA, Hegde RS. 2003. Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane. J Cell Biol 160:529–539
  • Frauenfeld J, Gumbart J, v d Sluis EO, Funes S, Gartmann M, Beatrix B, et al. 2011. Cryo-EM structure of the ribosome-SecYE complex in the membrane environment. Nat Struct Mol Biol 18:614–621
  • Fulga TA, Sinning I, Dobberstein B, Pool MR. 2001. SRbeta coordinates signal sequence release from SRP with ribosome binding to the translocon. EMBO J 20:2338–2347
  • Garcia PD, Walter P. 1988. Full-length prepro-alpha-factor can be translocated across the mammalian microsomal membrane only if translation has not terminated. J Cell Biol 106:1043–1048
  • Gatsos X, Perry AJ, Anwari K, Dolezal P, Wolynec PP, Likić VA, et al. 2008. Protein secretion and outer membrane assembly in Alphaproteobacteria. FEMS Microbiol Rev 32:995–1009
  • Gelis I, Bonvin AMJJ, Keramisanou D, Koukaki M, Gouridis G, Karamanou S, et al. 2007. Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131:756–769
  • Gilmore R, Blobel G, Walter P. 1982a. Protein translocation across the endoplasmic reticulum. I. Detection in the microsomal membrane of a receptor for the signal recognition particle. J Cell Biol 95:463–469
  • Gilmore R, Walter P, Blobel G. 1982b. Protein translocation across the endoplasmic reticulum. II. Isolation and characterization of the signal recognition particle receptor. J Cell Biol 95:470–477
  • Goder V, Bieri C, Spiess M. 1999. Glycosylation can influence topogenesis of membrane proteins and reveals dynamic reorientation of nascent polypeptides within the translocon. J Cell Biol 147:257–266
  • Gogala M, Becker T, Beatrix B, Armache J-P, Barrio-Garcia C, Berninghausen O, Beckmann R. 2014. Structures of the Sec61 complex engaged in nascent peptide translocation or membrane insertion. Nature 506:107–110
  • Gold VAM, Robson A, Bao H, Romantsov T, Duong F, Collinson I. 2010. The action of cardiolipin on the bacterial translocon. Proc Natl Acad Sci USA 107:10044–10049
  • Gordon SM, Kindt TJ. 1976. BIP: A low molecular weight protein coisolated with beta-2 microglublin. Biochem a Biophys Res Commun 72:984–990
  • Gorlich D, Rapoport TA. 1993. Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 75:615–630
  • Görlich D, Hartmann E, Prehn S, Rapoport TA. 1992. A protein of the endoplasmic reticulum involved early in polypeptide translocation. Nature 357:47–52
  • Götz C, Müller A, Montenarh M, Zimmermann R, Dudek J. 2009. The ER-membrane-resident Hsp40 ERj1 is a novel substrate for protein kinase CK2. Biochem a Biophys Res Commun 388:637–642
  • Gouridis G, Karamanou S, Gelis I, Kalodimos CG, Economou A. 2009. Signal peptides are allosteric activators of the protein translocase. Nature 462:363–367
  • Gruss OJ, Feick P, Frank R, Dobberstein B. 1999. Phosphorylation of components of the ER translocation site. Eur J Biochem 260:785–793
  • Gu SQ, Peske F, Wieden HJ, Rodnina MV, Wintermeyer W. 2003. The signal recognition particle binds to protein L23 at the peptide exit of the Escherichia coli ribosome. RNA 9:566–573
  • Gumbart J, Schulten K. 2008. The roles of pore ring and plug in the SecY protein-conducting channel. J Gen Physiol 132:709–719
  • Gumbart J, Trabuco LG, Schreiner E, Villa E, Schulten K. 2009. Regulation of the protein-conducting channel by a bound ribosome. Structure 17:1453–1464
  • Gutierrez JA, Crowley PJ, Cvitkovitch DG, Brady LJ, Hamilton IR, Hillman JD, Bleiweis AS. 1999. Streptococcus mutans ffh, a gene encoding a homologue of the 54 kDa subunit of the signal recognition particle, is involved in resistance to acid stress. Microbiology 145:357–366
  • Hainzl T, Huang SH, Sauer-Eriksson AE. 2002. Structure of the SRP19-RNA complex and implications for signal recognition particle assembly. Nature 417:767–771
  • Hainzl T, Huang SH, Sauer-Eriksson AE. 2005. Structural insights into SRP RNA: An induced fit mechanism for SRP assembly. RNA 11:1043–1050
  • Halic M, Becker T, Pool MR, Spahn CM, Grassucci RA, Frank J, Beckmann R. 2004. Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature 427:808–814
  • Halic M, Blau M, Becker T, Mielke T, Pool MR, Wild K, Sinning I, Beckmann R. 2006. Following the signal sequence from ribosomal tunnel exit to signal recognition particle. Nature 444:507–511
  • Hamman BD, Chen J-C, Johnson EE, Johnson AE. 1997. The aqueous pore through the translocon has a diameter of 40–60 Å during cotranslational protein translocation at the ER membrane. Cell 89:535–544
  • Hamman BD, Hendershot LM, Johnson AE. 1998. BiP maintains the permeability barrier of the ER membrane by sealing the lumenal end of the translocon pore before and early in translocation. Cell 92:747–758
  • Hand NJ, Klein R, Laskewitz A, Pohlschröder M. 2006. Archaeal and bacterial SecD and SecF homologs exhibit striking structural and functional conservation. J Bacteriol 188:1251–1259
  • Hann BC, Walter P. 1991. The signal recognition particle in S. cerevisiae. Cell 67:131–144
  • Harada Y, Li H, Lennarz WJ. 2009. Oligosaccharyltransferase directly binds to ribosome at a location near the translocon-binding site. Proc Natl Acad Sci USA 106:6945–6949
  • Harms N, Koningstein G, Dontje W, Muller M, Oudega B, Luirink J, de Cock H. 2001. The early interaction of the outer membrane protein phoe with the periplasmic chaperone Skp occurs at the cytoplasmic membrane. J Biol Chem 276:18804–18811
  • Harris CR, Silhavy TJ. 1999. Mapping an interface of SecY (PrlA) and SecE (PrlG) by using synthetic phenotypes and in vivo cross-linking. J Bacteriol 181:3438–3444
  • Hartman H, Smith TF. 2010. GTPases and the origin of the ribosome. Biol Direct 5:36
  • Hartmann E, Gorlich D, Kostka S, Otto A, Kraft R, Knespel S, et al. 1993. A tetrameric complex of membrane proteins in the endoplasmic reticulum. Eur J Biochem 214:375–381
  • Hartmann E, Sommer T, Prehn S, Görlich D, Jentsch S, Rapoport TA. 1994. Evolutionary conservation of components of the protein translocation complex. Nature 367:654–657
  • Hasona A, Crowley PJ, Levesque CM, Mair RW, Cvitkovitch DG, Bleiweis AS, Brady LJ. 2005. Streptococcal viability and diminished stress tolerance in mutants lacking the signal recognition particle pathway or YidC2. Proc Natl Acad Sci USA 102:17466–17471
  • Hegde RS, Bernstein HD. 2006. The surprising complexity of signal sequences. Trends Biochem Sci 31:563–571
  • Hegde RS, Keenan RJ. 2011. Tail-anchored membrane protein insertion into the endoplasmic reticulum. Nat Rev Mol Cell biol 12:787–798
  • Hegde RS, Voigt S, Rapoport TA, Lingappa VR. 1998. TRAM regulates the exposure of nascent secretory proteins to the cytosol during translocation into the endoplasmic reticulum. Cell 92:621–631
  • Heinrich SU, Mothes W, Brunner J, Rapoport TA. 2000. The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell 102:233–244
  • Heinrich SU, Rapoport TA. 2003. Cooperation of transmembrane segments during the integration of a double-spanning protein into the ER membrane. EMBO J 22:3654–3663
  • Helmers J, Schmidt D, Glavy JS, Blobel G, Schwartz T. 2003. The beta-subunit of the protein-conducting channel of the endoplasmic reticulum functions as the guanine nucleotide exchange factor for the beta-subunit of the signal recognition particle receptor. J Biol Chem 278:23686–23690
  • Hermesh O, Jansen R-P. 2013. Take the (RN)A-train: Localization of mRNA to the endoplasmic reticulum. Biochim Biophys Acta – Mol Cell Res 1833:2519–2525
  • Herskovits AA, Bibi E. 2000. Association of Escherichia coli ribosomes with the inner membrane requires the signal recognition particle receptor but is independent of the signal recognition particle. Proc Natl Acad Sci USA 97:4621–4626
  • Herskovits AA, Shimoni E, Minsky A, Bibi E. 2002. Accumulation of endoplasmic membranes and novel membrane-bound ribosome-signal recognition particle receptor complexes in Escherichia coli. J Cell Biol 159:403–410
  • Hessa T, Kim H, Bihlmaier K, Lundin C, Boekel J, Andersson H, et al. 2005. Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433:377–381
  • Higy M, Gander S, Spiess M. 2005. Probing the environment of signal-anchor sequences during topogenesis in the endoplasmic reticulum. Biochemistry 44:2039–2047
  • Hizlan D, Robson A, Whitehouse S, Gold Vicki A, Vonck J, Mills D, et al. 2012. Structure of the SecY complex unlocked by a preprotein mimic. Cell Rep 1:21–28
  • Hoffmann A, Becker Annemarie H, Zachmann-Brand B, Deuerling E, Bukau B, Kramer G. 2012. Concerted action of the ribosome and the associated chaperone trigger factor confines nascent polypeptide folding. Mol Cell 48:63–74
  • Holtkamp W, Lee S, Bornemann T, Senyushkina T, Rodnina MV, Wintermeyer W. 2012. Dynamic switch of the signal recognition particle from scanning to targeting. Nat Struct Mol Biol 19:1332–1337
  • Hori O, Miyazaki M, Tamatani T, Ozawa K, Takano K, Okabe M, et al. 2006. Deletion of SERP1/RAMP4, a component of the endoplasmic reticulum (ER) translocation sites, leads to ER stress. Mol Cell Biol 26:4257–4267
  • Hou B, Lin PJ, Johnson AE. 2012. Membrane protein TM segments are retained at the translocon during integration until the nascent chain cues FRET-detected release into bulk lipid. Mol Cell 48:398–408
  • Houben EN, Zarivach R, Oudega B, Luirink J. 2005. Early encounters of a nascent membrane protein: specificity and timing of contacts inside and outside the ribosome. J Cell Biol 170:27–35
  • Huber D, Boyd D, Xia Y, Olma MH, Gerstein M, Beckwith J. 2005. Use of thioredoxin as a reporter to identify a subset of Escherichia coli signal sequences that promote signal recognition particle-dependent translocation. J Bacteriol 187:2983–2991
  • Huber D, Rajagopalan N, Preissler S, Rocco MA, Merz F, Kramer G, Bukau B. 2011. SecA interacts with ribosomes in order to facilitate posttranslational translocation in bacteria. Mol Cell 41:343–353
  • Hunt JF, Weinkauf S, Henry L, Fak JJ, McNicholas P, Oliver DB, Deisenhofer J. 2002. Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA. Science 297:2018–2026
  • Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS. 2009. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–223
  • Ismail N, Crawshaw SG, Cross BCS, Haagsma AC, High S. 2008. Specific transmembrane segments are selectively delayed at the ER translocon during opsin biogenesis. Biochem J 411:495–506
  • Ismail N, Hedman R, Schiller N, von Heijne G. 2012. A biphasic pulling force acts on transmembrane helices during translocon-mediated membrane integration. Nat Struct Mol Biol 19:1018–1022
  • Ito K, Akiyama Y. 2005. Cellular functions, mechanism of action, and regulation of FtsH protease. Annul Rev Microbiol 59:211–231
  • Ito K, Wittekind M, Nomura M, Shiba K, Yura T, Miura A, Nashimoto H. 1983. A temperature-sensitive mutant of E. coli exhibiting slow processing of exported proteins. Cell 32:789–797
  • Jagath JR, Matassova NB, de Leeuw E, Warnecke JM, Lentzen G, Rodnina MV, et al. 2001. Important role of the tetraloop region of 4.5S RNA in SRP binding to its receptor FtsY. RNA 7:293–301
  • Janska H, Kwasniak M, Szczepanowska J. 2013. Protein quality control in organelles – AAA/FtsH story. Biochim Biophys Acta – Mol Cell Res 1833:381–387
  • Jaqaman K, Grinstein S. 2012. Regulation from within: The cytoskeleton in transmembrane signaling. Trends Cell Biol 22:515–526
  • Jarchow S, Luck C, Gorg A, Skerra A. 2008. Identification of potential substrate proteins for the periplasmic Escherichia coli chaperone Skp. Proteomics 8:4987–4994
  • Jermy AJ, Willer M, Davis E, Wilkinson BM, Stirling CJ. 2006. The Brl domain in Sec63p is required for assembly of functional endoplasmic reticulum translocons. J Biol Chem 281:7899–7906
  • Jiang Y, Cheng Z, Mandon EC, Gilmore R. 2008. An interaction between the SRP receptor and the translocon is critical during cotranslational protein translocation. J Cell Biol 180:1149–1161
  • Johnson N, Haβdenteufel S, Theis M, Paton AW, Paton JC, Zimmermann R, High S. 2013. The signal sequence influences post-translational ER translocation at distinct stages. PLoS ONE 8:e75394
  • Josefsson LG, Randall LL. 1981a. Different exported proteins in E. coli show differences in the temporal mode of processing in vivo. Cell 25:151–157
  • Josefsson LG, Randall LL. 1981b. Processing in vivo of precursor maltose-binding protein in Escherichia coli occurs post-translationally as well as co-translationally. J Biol Chem 256:2504–2507
  • Junne T, Schwede T, Goder V, Spiess M. 2006. The plug domain of yeast Sec61p is important for efficient protein translocation, but is not essential for cell viability. Mol Cell Biol 17:4063–4068
  • Kalies K-U, Rapoport TA, Hartmann E. 1998. The β subunit of the Sec61 complex facilitates cotranslational protein transport and interacts with the signal peptidase during translocation. J Cell Biol 141:887–894
  • Karamyshev AL, Johnson AE. 2005. Selective SecA association with signal sequences in ribosome-bound nascent chains: A potential role for SecA in ribosome targeting to the bacterial membrane. J Biol Chem 280:37930–37940
  • Karaoglu D, Kelleher DJ, Gilmore R. 1997. The highly conserved Stt3 protein is a subunit of the yeast oligosaccharyltransferase and forms a subcomplex with Ost3p and Ost4p. J Biol Chem 272:32513–32520
  • Keenan RJ, Freymann DM, Walter P, Stroud RM. 1998. Crystal structure of the signal sequence binding subunit of the signal recognition particle. Cell 94:181–191
  • Kelkar A, Dobberstein B. 2009. Sec61beta, a subunit of the Sec61 protein translocation channel at the endoplasmic reticulum, is involved in the transport of Gurken to the plasma membrane. BMC Cell Biol 10:11
  • Keller R, de Keyzer J, Driessen AJM, Palmer T. 2012. Co-operation between different targeting pathways during integration of a membrane protein. J Cell Biol 199:303–315
  • Keller RCA. 2011. The prediction of novel multiple lipid-binding regions in protein translocation motor proteins: A possible general feature. Cell Mol Biol Lett 16:40–54
  • Kihara A, Akiyama Y, Ito K. 1995. FtsH is required for proteolytic elimination of uncomplexed forms of SecY, an essential protein translocase subunit. Proc Natl Acad Sci USA 92:4532–4536
  • Kim S, Coulombe PA. 2010. Emerging role for the cytoskeleton as an organizer and regulator of translation. Nat Rev Mol Cell biol 11:75–81
  • Kinch LN, Saier JMH, Grishin NV. 2002. Sec61β – a component of the archaeal protein secretory system. Trends Biochem Sci 27:170–171
  • Knoblauch NTM, Rüdiger S, Schönfeld H-J, Driessen AJM, Schneider-Mergener J, Bukau B. 1999. Substrate specificity of the SecB chaperone. J Biol Chem 274:34219–34225
  • Knyazev DG, Lents A, Krause E, Ollinger N, Siligan C, Papinski D, et al. 2013. The bacterial translocon SecYEG opens upon ribosome binding. J Biol Chem 288:17941–17946
  • Koch HG, Hengelage T, Neumann-Haefelin C, MacFarlane J, Hoffschulte HK, Schimz K-L, et al. 1999. In vitro studies with purified components reveal signal recognition particle (SRP) and SecA/SecB as constituents of two independent protein-targeting pathways of Escherichia coli. Mol Cell Biol 10:2163–2173
  • Koch HG, Müller M. 2000. Dissecting the translocase and integrase functions of the Escherichia coli SecYEG translocon. J Cell Biol 150:689–694
  • Köhler R, Boehringer D, Greber B, Bingel-Erlenmeyer R, Collinson I, Schaffitzel C, Ban N. 2009. YidC and Oxa1 form dimeric insertion pores on the translating ribosome. Mol Cell 34:344–353
  • Kramer G, Boehringer D, Ban N, Bukau B. 2009. The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat Struct Mol Biol 16:589–597
  • Kramer G, Rauch T, Rist W, Vorderwulbecke S, Patzelt H, Schulze-Specking A, et al. 2002. L23 protein functions as a chaperone docking site on the ribosome. Nature 419:171–174
  • Kraut-Cohen J, Afanasieva E, Haim-Vilmovsky L, Slobodin B, Yosef I, Bibi E, Gerst JE. 2013. Translation- and SRP-independent mRNA targeting to the endoplasmic reticulum in the yeast Saccharomyces cerevisiae. Mol Cell Biol 24:3069–3084
  • Kraut-Cohen J, Gerst JE. 2010. Addressing mRNAs to the ER: Cis sequences act up!. Trends Biochem Sci 35:459–469
  • Krehenbrink M, Edwards A, Downie JA. 2011. The superoxide dismutase SodA is targeted to the periplasm in a SecA-dependent manner by a novel mechanism. Mol Microbiol 82:164–179
  • Krieg UC, Johnson AE, Walter P. 1989. Protein translocation across the endoplasmic reticulum membrane: identification by photocross-linking of a 39-kD integral membrane glycoprotein as part of a putative translocation tunnel. J Cell Biol 109:2033–2043
  • Kroczynska B, Evangelista CM, Samant SS, Elguindi EC, Blond SY. 2004. The SANT2 domain of the murine tumor cell DnaJ-like protein 1 human homologue interacts with α1-antichymotrypsin and kinetically interferes with its serpin inhibitory activity. J Biol Chem 279:11432–11443
  • Kudva R, Denks K, Kuhn P, Vogt A, Muller M, Koch HG, Müller M. 2013. Protein translocation across the inner membrane of Gram-negative bacteria: The Sec and Tat dependent protein transport pathways. Res Microbiol 164:505–534
  • Kuhn P, Weiche B, Sturm L, Sommer E, Drepper F, Warscheid B, et al. 2011. The bacterial SRP receptor, SecA and the ribosome use overlapping binding sites on the SecY translocon. Traffic 12:563–578
  • Kuhn P, Kudva R, Welte T, Sturm L, Koch HG. 2014. Targeting and integration of bacterial membrane proteins. In: Remi Fronzes HR, ed. Bacterial Membranes: Structural and Molecular Biology. Norwich, UK: Caister Academic Press; Horizon Scientific Press
  • Kurzchalia TV, Wiedmann M, Girshovich AS, Bochkareva ES, Bielka H, Rapoport TA. 1986. The signal sequence of nascent preprolactin interacts with the 54K polypeptide of the signal recognition particle. Nature 320:634–636
  • Kusters R, Dowhan W, de Kruijff B. 1991. Negatively charged phospholipids restore prePhoE translocation across phosphatidylglycerol-depleted Escherichia coli inner membranes. J Biol Chem 266:8659–8662
  • Lakkaraju AK, Mary C, Scherrer A, Johnson AE, Strub K. 2008. SRP keeps polypeptides translocation-competent by slowing translation to match limiting ER-targeting sites. Cell 133:440–451
  • Lakkaraju AKK, Abrami L, Lemmin T, Blaskovic S, Kunz B, Kihara A, et al. 2012a. Palmitoylated calnexin is a key component of the ribosome-translocon complex. EMBO J 31:1823–1835
  • Lakkaraju AKK, Thankappan R, Mary C, Garrison JL, Taunton J, Strub K. 2012b. Efficient secretion of small proteins in mammalian cells relies on Sec62-dependent posttranslational translocation. Mol Cell Biol 23:2712–2722
  • Lam VQ, Akopian D, Rome M, Henningsen D, Shan SO. 2010. Lipid activation of the signal recognition particle receptor provides spatial coordination of protein targeting. J Cell Biol 190:623–635
  • Lang S, Benedix J, Fedeles SV, Schorr S, Schirra C, Schäuble N, et al. 2012. Different effects of Sec61α, Sec62 and Sec63 depletion on transport of polypeptides into the endoplasmic reticulum of mammalian cells. J Cell Sci 125:1958–1969
  • Larsen N, Zwieb C. 1993. The signal recognition particle database (SRPDB). Nucleic Acids Res 21:3019–3020
  • Lau JT, Welply JK, Shenbagamurthi P, Naider F, Lennarz WJ. 1983. Substrate recognition by oligosaccharyl transferase. Inhibition of co-translational glycosylation by acceptor peptides. J Biol Chem 258:15255–15260
  • Lee AH, Iwakoshi NN, Glimcher LH. 2003. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23:7448–7459
  • Lee HC, Bernstein HD. 2001. The targeting pathway of Escherichia coli presecretory and integral membrane proteins is specified by the hydrophobicity of the targeting signal. Proc Natl Acad Sci USA 98:3471–3476
  • Leung E, Brown JD. 2010. Biogenesis of the signal recognition particle. Biochem Soc Trans 38:1093–1098
  • Leznicki P, Clancy A, Schwappach B, High S. 2010. Bat3 promotes the membrane integration of tail-anchored proteins. J Cell Sci 123:2170–2178
  • Li W, Schulman S, Boyd D, Erlandson K, Beckwith J, Rapoport TA. 2007. The plug domain of the SecY protein stabilizes the closed state of the translocation channel and maintains a membrane seal. Mol Cell 26:511–521
  • Liang H, VanValkenburgh C, Chen X, Mullins C, Van Kaer L, Green N, Fang H. 2003. Genetic complementation in yeast reveals functional similarities between the catalytic subunits of mammalian signal peptidase complex. J Biol Chem 278:50932–50939
  • Liao S, Lin J, Do H, Johnson AE. 1997. Both lumenal and cytosolic gating of the aqueous ER translocon pore are regulated from inside the ribosome during membrane protein integration. Cell 90:31–41
  • Lill R, Dowhan W, Wickner W. 1990. The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. Cell 60:271–280
  • Lithgow T, Waksman G. 2013. Seaside transportation – from structure to function of translocation machines. EMBO Rep 14:585–587
  • Loibl M, Wunderle L, Hutzler J, Schulz BL, Aebi M, Strahl S. 2014. Protein O-mannosyltransferases associate with the translocon to modify translocating polypeptide chains. J Biol Chem 289:8599–8611
  • Luirink J, High S, Wood H, Giner A, Tollervey D, Dobberstein B. 1992. Signal sequence recognition by an Escherichia coli ribonucleoprotein complex. Nature 359:741–743
  • Luirink J, ten Hagen-Jongman CM, van der Weijden CC, Oudega B, High S, Dobberstein B, Kusters R. 1994. An alternative protein targeting pathway in Escherichia coli: studies on the role of ftsY. EMBO J 13:2289–2296
  • Lütcke H, High S, Römisch K, Ashford A, Dobberstein B. 1992. The methionine-rich domain of the 54 kDa subunit of signal recognition particle is sufficient for the interaction with signal sequences. EMBO J 11:1543–1551
  • Lycklama a Nijeholt JA, de Keyzer J, Prabudiansyah I, Driessen AJM. 2013. Characterization of the supporting role of SecE in protein translocation. FEBS Lett 587:3083–3088
  • Lyman SK, Schekman R. 1995. Interaction between BiP and Sec63p is required for the completion of protein translocation into the ER of Saccharomyces cerevisiae. J Cell Biol 131:1163–1171
  • Lyman SK, Schekman R. 1997. Binding of secretory precursor polypeptides to a translocon subcomplex is regulated by BiP. Cell 88:85–96
  • Macfarlane J, Muller M. 1995. The functional integration of a polytopic membrane protein of Escherichia coli is dependent on the bacterial signal-recognition particle. Eur J Biochem 233:766–771
  • Mades A, Gotthardt K, Awe K, Stieler J, Döring T, Füser S, Prange R. 2012. Role of human Sec63 in modulating the steady-state levels of multi-spanning membrane proteins. PLoS One 7:e49243
  • Maillard AP, Lalani S, Silva F, Belin D, Duong F. 2007. Deregulation of the SecYEG translocation channel upon removal of the plug domain. J Biol Chem 282:1281–1287
  • Martoglio B, Hofmann MW, Brunner J, Dobberstein B. 1995. The protein-conducting channel in the membrane of the endoplasmic reticulum is open laterally toward the lipid bilayer. Cell 81:207–214
  • Matern Y, Barion B, Behrens-Kneip S. 2010. PpiD is a player in the network of periplasmic chaperones in Escherichia coli. BMC Microbiol 10:251
  • Matlack KES, Misselwitz B, Plath K, Rapoport TA. 1999. BiP acts as a molecular ratchet during posttranslational transport of prepro-α factor across the ER membrane. Cell 97:553–564
  • Ménétret J-F, Hegde RS, Heinrich SU, Chandramouli P, Ludtke SJ, Rapoport TA, Akey CW. 2005. Architecture of the ribosome-channel complex derived from native membranes. J Mol Biol 348:445–457
  • Ménétret J-F, Schaletzky J, Clemons WM, Osborne AR, Skånland SS, Denison C, et al. 2007. Ribosome binding of a single copy of the SecY complex: Implications for protein translocation. Mol Cell 28:1083–1092
  • Ménétret JF, Hegde RS, Aguiar M, Gygi SP, Park E, Rapoport TA, et al. 2008. Single copies of Sec61 and TRAP associate with a nontranslating mammalian ribosome. Structure 16:1126–1137
  • Merdanovic M, Clausen T, Kaiser M, Huber R, Ehrmann M. 2011. Protein quality control in the bacterial periplasm. Annul Rev Microbiol 65:149–168
  • Meyer H-A, Grau H, Kraft R, Kostka S, Prehn S, Kalies K-U, Hartmann E. 2000. Mammalian Sec61 is associated with Sec62 and Sec63. J Biol Chem 275:14550–14557
  • Mikhaleva NI, Golovastov VV, Zolov SN, Bogdanov MV, Dowhan W, Nesmeyanova MA. 2001. Depletion of phosphatidylethanolamine affects secretion of Escherichia coli alkaline phosphatase and its transcriptional expression. FEBS Lett 493:85–90
  • Miller JD, Bernstein HD, Walter P. 1994. Interaction of E. coli Ffh/4.5S ribonucleoprotein and FtsY mimics that of mammalian signal recognition particle and its receptor. Nature 367:657–659
  • Millman JS, Qi HY, Vulcu F, Bernstein HD, Andrews DW. 2001. FtsY binds to the Escherichia coli inner membrane via interactions with phosphatidylethanolamine and membrane proteins. J Biol Chem 276:25982–25989
  • Mircheva M, Boy D, Weiche B, Hucke F, Graumann P, Koch HG. 2009. Predominant membrane localization is an essential feature of the bacterial signal recognition particle receptor. BMC Biol 7:76
  • Missiakas D, Betton J-M, Raina S. 1996. New components of protein folding in extracytoplasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH. Mol Microbiol 21:871–884
  • Mitra K, Schaffitzel C, Shaikh T, Tama F, Jenni S, Brooks CL, et al. 2005. Structure of the E. coli protein-conducting channel bound to a translating ribosome. Nature 438:318–324
  • Montero Llopis P, Jackson AF, Sliusarenko O, Surovtsev I, Heinritz J, Emonet T, Jacobs-Wagner C. 2010. Spatial organization of the flow of genetic information in bacteria. Nature 466:77–81
  • Mori H, Ito K. 2006. Different modes of SecY-SecA interactions revealed by site-directed in vivo photo-cross-linking. Proc Natl Acad Sci USA 103:16159–16164
  • Morita K, Tokuda H, Nishiyama K-i. 2012. Multiple SecA molecules drive protein translocation across a single translocon with SecG inversion. J Biol Chem 287:455–464
  • Moser M, Nagamori S, Huber M, Tokuda H, Nishiyama K-i. 2013. Glycolipozyme MPIase is essential for topology inversion of SecG during preprotein translocation. Proc Natl Acad Sci USA 110:9734–9739
  • Müller L, de Escauriaza MD, Lajoie P, Theis M, Jung M, Müller A, et al. 2010. Evolutionary gain of function for the ER membrane protein Sec62 from yeast to humans. Mol Cell Biol 21:691–703
  • Müller M, Koch HG, Beck K, Schafer U. 2001. Protein traffic in bacteria: Multiple routes from the ribosome to and across the membrane. Prog Nucleic Acid Res Mol Biol 66:107–157
  • Nagamori S, Smirnova IN, Kaback HR. 2004. Role of YidC in folding of polytopic membrane proteins. J Cell Biol 165:53–62
  • Nakashima K, Ishida H, Nakatomi A, Yazawa M. 2012. Specific conformation and Ca2+-binding mode of yeast calmodulin: Insight into evolutionary development. J Bacteriol 152:27–35
  • Nam S-E, Paetzel M. 2013. Structure of signal peptide peptidase A with C-termini bound in the active sites: Insights into specificity, self-processing, and regulation. Biochemistry 52:8811–8822
  • Neumann-Haefelin C, Schafer U, Muller M, Koch HG. 2000. SRP-dependent co-translational targeting and SecA-dependent translocation analyzed as individual steps in the export of a bacterial protein. EMBO J 19:6419–6426
  • Nevo-Dinur K, Nussbaum-Shochat A, Ben-Yehuda S, Amster-Choder O. 2011. Translation-independent localization of mRNA in E. coli. Science 331:1081–1084
  • Ng DT, Brown JD, Walter P. 1996. Signal sequences specify the targeting route to the endoplasmic reticulum membrane. J Cell Biol 134:269–278
  • Nicchitta CV, Blobel G. 1993. Lumenal proteins of the mammalian endoplasmic reticulum are required to complete protein translocation. Cell 73:989–998
  • Nilsson I, Ohvo-Rekila H, Slotte JP, Johnson AE, von Heijne G. 2001. Inhibition of protein translocation across the endoplasmic reticulum membrane by sterols. J Biol Chem 276:41748–41754
  • Nishiyama K-i, Suzuki T, Tokuda H. 1996. Inversion of the membrane topology of SecG coupled with SecA-dependent preprotein translocation. Cell 85:71–81
  • Nishiyama K, Hanada M, Tokuda H. 1994. Disruption of the gene encoding p12 (SecG) reveals the direct involvement and important function of SecG in the protein translocation of Escherichia coli at low temperature. EMBO J 13:3272–3277
  • Nishiyama K, Maeda M, Yanagisawa K, Nagase R, Komura H, Iwashita T, et al. 2012. MPIase is a glycolipozyme essential for membrane protein integration. Nat Commun 3:1260
  • Nohara T, Nakai M, Goto A, Endo T. 1995. Isolation and characterization of the cDNA for pea chloroplast SecA. Evolutionary conservation of the bacterial-type SecA-dependent protein transport within chloroplasts. FEBS Lett 364:305–308
  • Nothaft H, Szymanski CM. 2010. Protein glycosylation in bacteria: Sweeter than ever. Nat Rev Miocobiol 8:765–778
  • Nouwen N, de Kruijff B, Tommassen J. 1996. ΔμH+ dependency of in vitro protein translocation into Escherichia coli inner-membrane vesicles varies with the signal-sequence core-region composition. Mol Microbiol 19:1205–1214
  • Nouwen N, Driessen AJM. 2002. SecDFyajC forms a heterotetrameric complex with YidC. Mol Microbiol 44:1397–1405
  • Nyathi Y, Wilkinson BM, Pool MR. 2013. Co-translational targeting and translocation of proteins to the endoplasmic reticulum. Biochim Biophys Acta 1833:2392–2402
  • O’Neil K, DeGrado WF. 1990. How calmodulin binds its targets: Sequence independent recognition of amphiphilic alpha-helices. Trends Biochem Sci 15:59–64
  • Ogg SC, Poritz MA, Walter P. 1992. Signal recognition particle receptor is important for cell growth and protein secretion in Saccharomyces cerevisiae. Mol Cell Biol 3:895–911
  • Ogg SC, Walter P. 1995. SRP samples nascent chains for the presence of signal sequences by interacting with ribosomes at a discrete step during translation elongation. Cell 81:1075–1084
  • Oh E, Becker AH, Sandikci A, Nichols RJ, Typas A, Gross CA, et al. 2011. Selective ribosome profiling reveals the cotranslational chaperone action of trigger factor in vivo. Cell 147:1295–1308
  • Öjemalm K, Botelho SC, Stüdle C, von Heijne G. 2013. Quantitative analysis of SecYEG-mediated insertion of transmembrane α-helices into the bacterial inner membrane. J Mol Biol 425:2813–2822
  • Öjemalm K, Halling KK, Nilsson I, von Heijne G. 2012. Orientational preferences of neighboring helices can drive ER insertion of a marginally hydrophobic transmembrane helix. Mol Cell 45:529–540
  • Oliver DB, Beckwith J. 1981. E. coli mutant pleiotropically defective in the export of secreted proteins. Cell 25:765–772
  • Osborne AR, Rapoport TA. 2007. Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channel. Cell 129:97–110
  • Osborne R, Silhavy TJ. 1993. PrlA suppressor mutations cluster in regions corresponding to three distinct topological domains. EMBO J 12:3391–3398
  • Paetzel M, Dalbey RE, Strynadka NCJ. 1998. Crystal structure of a bacterial signal peptidase in complex with a [beta]-lactam inhibitor. Nature 396:186–190
  • Palacios IM. 2007. How does an mRNA find its way? Intracellular localisation of transcripts. Semin Cell Develop Biol 18:163–170
  • Palmer T, Berks BC. 2012. The twin-arginine translocation (Tat) protein export pathway. Nat Rev Miocobiol 10:483–496
  • Panzner S, Dreier L, Hartmann E, Kostka S, Rapoport TA. 1995. Posttranslational protein transport in yeast reconstituted with a purified complex of Sec proteins and Kar2p. Cell 81:561–570
  • Papanikou E, Karamanou S, Economou A. 2007. Bacterial protein secretion through the translocase nanomachine. Nat Rev Miocobiol 5:839–851
  • Park E, Ménétret J-F, Gumbart JC, Ludtke SJ, Li W, Whynot A, et al. 2014. Structure of the SecY channel during initiation of protein translocation. Nature 506:102–106
  • Park E, Rapoport TA. 2012. Mechanisms of Sec61/SecY-mediated protein translocation across membranes. Annu Rev Biophys 41:21–40
  • Parlitz R, Eitan A, Stjepanovic G, Bahari L, Bange G, Bibi E, Sinning I. 2007. Escherichia coli signal recognition particle receptor FtsY contains an essential and autonomous membrane-binding amphipathic helix. J Biol Chem 282:32176–32184
  • Pfeffer S, Brandt F, Hrabe T, Lang S, Eibauer M, Zimmermann R, Förster F. 2012. Structure and 3D arrangement of endoplasmic reticulum membrane-associated ribosomes. Structure 20:1508–1518
  • Pfeffer S, Dudek J, Gogala M, Schorr S, Linxweiler J, Lang S, et al. 2014. Structure of the mammalian oligosaccharyl-transferase complex in the native ER protein translocon. Nat Commun 5:3072
  • Plath K, Mothes W, Wilkinson BM, Stirling CJ, Rapoport TA. 1998. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94:795–807
  • Plath K, Wilkinson BM, Stirling CJ, Rapoport TA. 2004. Interactions between Sec complex and prepro-alpha-factor during posttranslational protein transport into the endoplasmic reticulum. Mol Cell Biol 15:1–10
  • Pogliano JA, Beckwith J. 1994. SecD and SecF facilitate protein export in Escherichia coli. EMBO J 13:554–561
  • Pohlschröder M, Hartmann E, Hand NJ, Dilks K, Haddad A. 2005. Diversity and evolution of protein translocation. Annu Rev Microbiol 59:91–111
  • Pool MR. 2009. A trans-membrane segment inside the ribosome exit tunnel triggers RAMP4 recruitment to the Sec61p translocase. J Cell Biol 185:889–902
  • Poritz M, Bernstein H, Strub K, Zopf D, Wilhelm H, Walter P. 1990. An E. coli ribonucleoprotein containing 4.5S RNA resembles mammalian signal recognition particle. Science 250:1111–1117
  • Poritz MA, Siegel V, Hansen W, Walter P. 1988a. Small ribonucleoproteins in Schizosaccharomyces pombe and Yarrowia lipolytica homologous to signal recognition particle. Proc Natl Acad Sci USA 85:4315–4319
  • Poritz MA, Strub K, Walter P. 1988b. Human SRP RNA and E. coli 4.5S RNA contain a highly homologous structural domain. Cell 55:4–6
  • Potter MD, Nicchitta CV. 2000. Regulation of ribosome detachment from the mammalian endoplasmic reticulum membrane. J Biol Chem 275:33828–33835
  • Potter MD, Nicchitta CV. 2002. Endoplasmic reticulum-bound ribosomes reside in stable association with the translocon following termination of protein synthesis. J Biol Chem 277:23314–23320
  • Powers T, Walter P. 1997. Co-translational protein targeting catalyzed by the Escherichia coli signal recognition particle and its receptor. EMBO J 16:4880–4886
  • Prilusky J, Bibi E. 2009. Studying membrane proteins through the eyes of the genetic code revealed a strong uracil bias in their coding mRNAs. Proc Natl Acad Sci USA 106:6662–6666
  • Prinz A, Behrens C, Rapoport TA, Hartmann E, Kalies K-UU. 2000. Evolutionarily conserved binding of ribosomes to the translocation channel via the large ribosomal RNA. EMBO J 19:1900–1906
  • Raden D, Song W, Gilmore R. 2000. Role of the cytoplasmic segments of Sec61α in the ribosome-binding and translocation-promoting activities of the Sec61 complex. J Cell Biol 150:53–64
  • Raetz CR. 1978. Enzymology, genetics, and regulation of membrane phospholipid synthesis in Escherichia coli. Microbiol Rev 42:614–659
  • Randall LL, Hardy SJS. 1977. Synthesis of exported proteins by membrane-bound polysomes from Escherichia coli. Eur J Biochem 75:43–53
  • Randall LL, Topping TB, Smith VF, Diamond DL, Hardy SJ 1998. SecB: A chaperone from Escherichia coli. Methods Enzymol 290:444–459
  • Rapiejko PJ, Gilmore R. 1997. Empty site forms of the SRP54 and SR alpha GTPases mediate targeting of ribosome-nascent chain complexes to the endoplasmic reticulum. Cell 89:703–713
  • Rapp M, Granseth E, Seppälä S, von Heijne G. 2006. Identification and evolution of dual-topology membrane proteins. Nat Struct Mol Biol 13:112–116
  • Raue U, Oellerer S, Rospert S. 2007. Association of protein biogenesis factors at the yeast ribosomal tunnel exit is affected by the translational status and nascent polypeptide sequence. J Biol Chem 282:7809–7816
  • Reid DW, Nicchitta CV. 2012. Primary role for endoplasmic reticulum-bound ribosomes in cellular translation identified by ribosome profiling. J Biol Chem 287:5518–5527
  • Reithinger JH, Kim JEH, Kim H. 2013. Sec62 protein mediates membrane insertion and orientation of moderately hydrophobic signal anchor proteins in the endoplasmic reticulum (ER). J Biol Chem 288:18058–18067
  • Rensing SA, Maier UG. 1994. The SecY protein family: Comparative analysis and phylogenetic relationships. Mol Phylogen Evol 3:187–191
  • Rietveld AG, Koorengevel MC, de Kruijff B. 1995. Non-bilayer lipids are required for efficient protein transport across the plasma membrane of Escherichia coli. EMBO J 14:5506–5513
  • Römisch K, Ribes V, High S, Lütcke H, Tollervey D, Dobberstein B. 1990. Structure and function of signal recognition particle (SRP). Mol Biol Rep 14:71–72
  • Sääf A, Andersson H, Gafvelin G, Heijnet Gv. 2009. SecA-dependence of the translocation of a large periplasmic loop in the Escherichia coli MalF inner membrane protein is a function of sequence context. Mol Membr Biol 12:209–215
  • Sachelaru I, Petriman NA, Kudva R, Kuhn P, Welte T, Knapp B, et al. 2013. YidC occupies the lateral gate of the SecYEG translocon and is sequentially displaced by a nascent membrane protein. J Biol Chem 288:16295–16307
  • Sadlish H, Pitonzo D, Johnson AE, Skach WR. 2005. Sequential triage of transmembrane segments by Sec61alpha during biogenesis of a native multispanning membrane protein. Nat Struct Mol Biol 12:870–878
  • Samuelson JC, Jiang F, Yi L, Chen M, de Gier JW, Kuhn A, Dalbey RE. 2001. Function of YidC for the insertion of M13 procoat protein in Escherichia coli: Translocation of mutants that show differences in their membrane potential dependence and Sec requirement. J Biol Chem 276:34847–34852
  • Sandikci A, Gloge F, Martinez M, Mayer MP, Wade R, Bukau B, Kramer G. 2013. Dynamic enzyme docking to the ribosome coordinates N-terminal processing with polypeptide folding. Nat Struct Mol Biol 20:843–850
  • Satoh Y, Matsumoto G, Mori H, Ito K. 2003. Nearest neighbor analysis of the SecYEG complex. 1. Identification of a SecY-SecG interface. Biochemistry 42:7434–7441
  • Saurí A, McCormick PJ, Johnson AE, Mingarro I. 2007. Sec61α and TRAM are sequentially adjacent to a nascent viral membrane protein during its ER integration. J Mol Biol 366:366–374
  • Schachter H, Freeze HH. 2009. Glycosylation diseases: Quo vadis? Biochim Biophys Acta 1792:925–930
  • Schäfer U, Beck K, Müller M. 1999. Skp, a molecular chaperone of gram-negative bacteria, is required for the formation of soluble periplasmic intermediates of outer membrane proteins. J Biol Chem 274:24567–24574
  • Schaffitzel C, Oswald M, Berger I, Ishikawa T, Abrahams JP, Koerten HK, et al. 2006. Structure of the E. coli signal recognition particle bound to a translating ribosome. Nature 444:503–506
  • Schaletzky J, Rapoport TA. 2006. Ribosome binding to and dissociation from translocation sites of the endoplasmic reticulum membrane. Mol Cell Biol 17:3860–3869
  • Schatz PJ, Beckwith J. 1990. Genetic analysis of protein export in Escherichia coli. Annu Rev Genet 24:215–248
  • Schatz PJ, Bieker KL, Ottemann KM, Silhavy TJ, Beckwith J. 1991. One of three transmembrane stretches is sufficient for the functioning of the SecE protein, a membrane component of the E. coli secretion machinery. EMBO J 10:1749–1757
  • Schäuble N, Lang S, Jung M, Cappel S, Schorr S, Ulucan Ö, et al. 2012. BiP-mediated closing of the Sec61 channel limits Ca2+ leakage from the ER. EMBO J 31:3282–3296
  • Schiebel E, Driessen AJM, Hartl F-U, Wickner W. 1991. µH+ and ATP function at different steps of the catalytic cycle of preprotein translocase. Cell 64:927–939
  • Schlenker O, Hendricks A, Sinning I, Wild K. 2006. The structure of the mammalian signal recognition particle (SRP) receptor as prototype for the interaction of small GTPases with Longin domains. J Biol Chem 281:8898–8906
  • Schlünzen F, Wilson DN, Tian P, Harms JM, McInnes SJ, Hansen HA, et al. 2005. The binding mode of the trigger factor on the ribosome: implications for protein folding and SRP interaction. Structure 13:1685–1694
  • Schröder K, Martoglio B, Hofmann M, Holscher C, Hartmann E, Prehn S, et al. 1999. Control of glycosylation of MHC class II-associated invariant chain by translocon-associated RAMP4. EMBO J 18:4804–4815
  • Schwartz T, Blobel G. 2003. Structural basis for the function of the β subunit of the eukaryotic signal recognition particle receptor. Cell 112:793–803
  • Schwarz F, Aebi M. 2011. Mechanisms and principles of N-linked protein glycosylation. Curr Opin Struct Biol 21:576–582
  • Seitl I, Wickles S, Beckmann R, Kuhn A, Kiefer D. 2013. The C-terminal regions of YidC from Rhodopirellula baltica and Oceanicaulis alexandrii bind to ribosomes and partially substitute for SRP receptor function in Escherichia coli. Mol Microbiol 91:408–421
  • Shao S, Hegde RS. 2011. Membrane protein insertion at the endoplasmic reticulum. Annu Rev Cell Dev Biol 27:25–56
  • Shaw AS, Rottier PJ, Rose JK. 1988. Evidence for the loop model of signal-sequence insertion into the endoplasmic reticulum. Proc Natl Acad Sci USA 85:7592–7596
  • Shibatani T, David LL, McCormack AL, Frueh K, Skach WR. 2005. Proteomic analysis of mammalian oligosaccharyltransferase reveals multiple subcomplexes that contain Sec61, TRAP, and two potential new subunits. Biochemistry 44:5982–5992
  • Shiozuka K, Tani K, Mizushima S, Tokuda H. 1990. The proton motive force lowers the level of ATP required for the in vitro translocation of a secretory protein in Escherichia coli. J Biol Chem 265:18843–18847
  • Siegel V, Walter P. 1985. Elongation arrest is not a prerequisite for secretory protein translocation across the microsomal membrane. J Cell Biol 100:1913–1921
  • Siegel V, Walter P. 1986. Removal of the Alu structural domain from signal recognition particle leaves its protein translocation activity intact. Nature 320:81–84
  • Skowronek MH, Rotter M, Haas IG. 1999. Molecular characterization of a novel mammalian DnaJ-like Sec63p homolog. Biol Chem 380:1133–1138
  • Smith MA, Clemons WM, DeMars CJ, Flower AM. 2005. Modeling the effects of prl mutations on the Escherichia coli SecY complex. J Bacteriol 187:6454–6465
  • Sommer N, Junne T, Kalies KU, Spiess M, Hartmann E. 2013. TRAP assists membrane protein topogenesis at the mammalian ER membrane. Biochim Biophys Acta 1833:3104–3111
  • Song W, Raden D, Mandon EC, Gilmore R. 2000. Role of Sec61α in the regulated transfer of the ribosome-nascent chain complex from the signal recognition particle to the translocation channel. Cell 100:333–343
  • Soromani C, Zeng N, Hollemeyer K, Heinzle E, Klein M-C, Tretter T, et al. 2012. N-acetylation and phosphorylation of Sec complex subunits in the ER membrane. BMC Cell Biol 13:34
  • Stephens SB, Dodd RD, Brewer JW, Lager PJ, Keene JD, Nicchitta CV. 2005. Stable ribosome binding to the endoplasmic reticulum enables compartment-specific regulation of mRNA translation. Mol Cell Biol 16:5819–5831
  • Sugai R, Takemae K, Tokuda H, Nishiyama K-i. 2007. Topology inversion of SecG is essential for cytosolic SecA-dependent stimulation of protein translocation. J Biol Chem 282:29540–29548
  • Tai VW, Imperiali B. 2001. Substrate specificity of the glycosyl donor for oligosaccharyl transferase. J Org Chem 66:6217–6228
  • Tamborero S, Vilar M, Martinez-Gil L, Johnson AE, Mingarro I. 2011. Membrane insertion and topology of the translocating chain-associating membrane protein (TRAM). J Mol Biol 406:571–582
  • Terzi L, Pool MR, Dobberstein B, Strub K. 2004. Signal recognition particle Alu domain occupies a defined site at the ribosomal subunit interface upon signal sequence recognition. Biochemistry 43:107–117
  • Tian H, Beckwith J. 2002. Genetic screen yields mutations in genes encoding all known components of the Escherichia coli signal recognition particle pathway. J Bacteriol 184:111–118
  • Tjalsma H, Bolhuis A, van Roosmalen ML, Wiegert T, Schumann W, Broekhuizen CP, et al. 1998. Functional analysis of the secretory precursor processing machinery of Bacillus subtilis: Identification of a eubacterial homolog of archaeal and eukaryotic signal peptidases. Genes Develop 12:2318–2331
  • Tomkiewicz D, Nouwen N, Driessen AJM. 2007. Pushing, pulling and trapping – modes of motor protein supported protein translocation. FEBS Lett 581:2820–2828
  • Tomkiewicz D, Nouwen N, van Leeuwen R, Tans S, Driessen AJM. 2006. SecA supports a constant rate of preprotein translocation. J Biol Chem 281:15709–15713
  • Tong J, Dolezal P, Selkrig J, Crawford S, Simpson AGB, Noinaj N, et al. 2011. Ancestral and derived protein import pathways in the mitochondrion of Reclinomonas americana. Mol Biol Evol 28:1581–1591
  • Träger C, Rosenblad MA, Ziehe D, Garcia-Petit C, Schrader L, Kock K, et al. 2012. Evolution from the prokaryotic to the higher plant chloroplast signal recognition particle: The signal recognition particle RNA is conserved in plastids of a wide range of photosynthetic organisms. Plant Cell 24:4819–4836
  • Tseng TT, Gratwick KS, Kollman J, Park D, Nies DH, Goffeau A, Saier MH. 1999. The RND permease superfamily: An ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol MicroBio Biotechnol 1:107–125
  • Tsukazaki T, Mori H, Echizen Y, Ishitani R, Fukai S, Tanaka T, et al. 2011. Structure and function of a membrane component SecDF that enhances protein export. Nature 474:235–238
  • Tsukazaki T, Mori H, Fukai S, Ishitani R, Mori T, Dohmae N, et al. 2008. Conformational transition of Sec machinery inferred from bacterial SecYE structures. Nature 455:988–991
  • Tyedmers J, Lerner M, Bies C, Dudek J, Skowronek MH, Haas IG, et al. 2000. Homologs of the yeast Sec complex subunits Sec62p and Sec63p are abundant proteins in dog pancreas microsomes. Proc Natl Acad Sci USA 97:7214–7219
  • Tyedmers J, Lerner M, Wiedmann M, Volkmer J, Zimmermann R. 2003. Polypeptide-binding proteins mediate completion of co-translational protein translocation into the mammalian endoplasmic reticulum. EMBO Rep 4:505–510
  • Tyson JR, Stirling CJ. 2000. LHS1 and SIL1 provide a lumenal function that is essential for protein translocation into the endoplasmic reticulum. EMBO J 19:6440–6452
  • Ullers RS, Houben EN, Raine A, ten Hagen-Jongman CM, Ehrenberg M, Brunner J, et al. 2003. Interplay of signal recognition particle and trigger factor at L23 near the nascent chain exit site on the Escherichia coli ribosome. J Cell Biol 161:679–684
  • Urbanus ML, Scotti PA, Froderberg L, Saaf A, de Gier JW, Brunner J, et al. 2001. Sec-dependent membrane protein insertion: sequential interaction of nascent FtsQ with SecY and YidC. EMBO Rep 2:524–529
  • Valencia-Burton M, McCullough RM, Cantor CR, Broude NE. 2007. RNA visualization in live bacterial cells using fluorescent protein complementation. Nat Meth 4:421–427
  • Valent Q, Kendall D, High S, Kusters R, Oudega B, Luirink J. 1995. Early events in preprotein recognition in E. coli: interaction of SRP and trigger factor with nascent polypeptides. EMBO J 14:5494–5505
  • Valent QA, Scotti PA, High S, de Gier JW, von Heijne G, Lentzen G, et al. 1998. The Escherichia coli SRP and SecB targeting pathways converge at the translocon. EMBO J 17:2504–2512
  • van Bloois E, Dekker HL, Froderberg L, Houben EN, Urbanus ML, de Koster CG, et al. 2008. Detection of cross-links between FtsH, YidC, HflK/C suggests a linked role for these proteins in quality control upon insertion of bacterial inner membrane proteins. FEBS Lett 582:1419–1424
  • van Dalen A, de Kruijff B. 2004. The role of lipids in membrane insertion and translocation of bacterial proteins. Biochim Biophys Acta – Mol Cell Res 1694:97–109
  • Van den Berg B, Clemons WM, Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport TA. 2004. X-ray structure of a protein-conducting channel. Nature 427:36–44
  • van der Does C, Swaving J, van Klompenburg W, Driessen AJM. 2000. Non-bilayer lipids stimulate the activity of the reconstituted bacterial protein translocase. J Biol Chem 275:2472–2478
  • van der Laan M, Nouwen N, Driessen AJM. 2004. SecYEG proteoliposomes catalyze the Deltaphi-dependent membrane insertion of FtsQ. J Biol Chem 279:1659–1664
  • van der Sluis EO, Driessen AJM. 2006. Stepwise evolution of the Sec machinery in proteobacteria. Trends Microbiol 14:105–108
  • van der Sluis EO, Nouwen N, Driessen AJM. 2002. SecY–SecY and SecY–SecG contacts revealed by site-specific crosslinking. FEBS Lett 527:159–165
  • van der Sluis EO, van der Vries E, Berrelkamp G, Nouwen N, Driessen AJM. 2006. Topologically fixed SecG is fully functional. J Bacteriol 188:1188–1190
  • van Meer G, Voelker DR, Feigenson GW. 2008. Membrane lipids: Where they are and how they behave. Nat Rev Mol Cell biol 9:112–124
  • VanValkenburgh C, Chen X, Mullins C, Fang H, Green N. 1999. The catalytic mechanism of endoplasmic reticulum signal peptidase appears to be distinct from most eubacterial signal peptidases. J Biol Chem 274:11519–11525
  • Vassylyev DG, Mori H, Vassylyeva MN, Tsukazaki T, Kimura Y, Tahirov TH, Ito K. 2006. Crystal structure of the translocation ATPase SecA from Thermus thermophilus reveals a parallel, head-to-head dimer. J Mol Biol 364:248–258
  • Vitrac H, Bogdanov M, Heacock P, Dowhan W. 2011. Lipids and topological rules of membrane protein assembly: balance between long and short range lipid-protein interactions. J Biol Chem 286:15182–15194
  • von Heijne G. 1984. Analysis of the distribution of charged residues in the N-terminal region of signal sequences: Implications for protein export in prokaryotic and eukaryotic cells. EMBO J 3:2315–2318
  • von Heijne G. 1985. Signal sequences. The limits of variation. J Mol Biol 184:99–105
  • von Heijne G. 1986. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res 14:4683–4690
  • von Heijne G. 1990. The signal peptide. J Membr Biol 115:195–201
  • von Heijne G, Gavel Y. 1988. Topogenic signals in integral membrane proteins. Eur J Biochem 174:671–678
  • Voss M, Schröder B, Fluhrer R. 2013. Mechanism, specificity, and physiology of signal peptide peptidase (SPP) and SPP-like proteases. Biochim Biophys Acta – Biomembr 1828:2828–2839
  • Walter P, Blobel G. 1980. Purification of a membrane-associated protein complex required for protein translocation across the endoplasmic reticulum. Proc Natl Acad Sci USA 77:7112–7116
  • Walter P, Blobel G. 1981. Translocation of proteins across the endoplasmic reticulum III. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes. J Cell Biol 91:557–561
  • Walter P, Blobel G. 1982. Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum. Nature 299:691–698
  • Walter P, Ibrahimi I, Blobel G. 1981. Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to in-vitro-assembled polysomes synthesizing secretory protein. J Cell Biol 91:545–550
  • Wang L, Dobberstein B. 1999. Oligomeric complexes involved in translocation of proteins across the membrane of the endoplasmic reticulum. FEBS Lett 457:316–322
  • Wang P, Shim E, Cravatt B, Jacobsen R, Schoeniger J, Kim AC, et al. 2008. Escherichia coli signal peptide peptidase A is a serine-lysine protease with a lysine recruited to the nonconserved amino-terminal domain in the S49 protease family. Biochemistry 47:6361–6369
  • Watanabe M, Blobel G. 1989. SecB functions as a cytosolic signal recognition factor for protein export in E. coli. Cell 58:695–705
  • Weiche B, Bürk J, Angelini S, Schiltz E, Thumfart JO, Koch HG. 2008. A cleavable N-terminal membrane anchor is involved in membrane binding of the Escherichia coli SRP receptor. J Mol Biol 377:761–773
  • Welte T, Kudva R, Kuhn P, Sturm L, Braig D, Müller M, et al. 2012. Promiscuous targeting of polytopic membrane proteins to SecYEG or YidC by the Escherichia coli signal recognition particle. Mol Cell Biol 23:464–479
  • Whitehouse S, Gold VAM, Robson A, Allen WJ, Sessions RB, Collinson I. 2012. Mobility of the SecA 2-helix-finger is not essential for polypeptide translocation via the SecYEG complex. J Cell Biol 199:919–929
  • Wild K, Sinning I, Cusack S. 2001. Crystal structure of an early protein-RNA assembly complex of the signal recognition particle. Science 294:598–601
  • Wirth A, Jung M, Bies C, Frien M, Tyedmers J, Zimmermann R, Wagner R. 2003. The Sec61p complex is a dynamic precursor activated channel. Mol Cell 12:261–268
  • Wittke S, Dunnwald M, Johnsson N. 2000. Sec62p, a component of the endoplasmic reticulum protein translocation machinery, contains multiple binding sites for the Sec-complex. Mol Cell Biol 11:3859–3871
  • Wu ZC, de Keyzer J, Kedrov A, Driessen AJM. 2012. Competitive binding of the SecA ATPase and ribosomes to the SecYEG translocon. J Biol Chem 287:7885–7895
  • Xing L, Bassell GJ. 2013. mRNA localization: An orchestration of assembly, traffic and synthesis. Traffic 14:2–14
  • Xu Z, Knafels JD, Yoshino K. 2000. Crystal structure of the bacterial protein export chaperone SecB. Nat Struct Mol Biol 7:1172–1177
  • Yamaguchi A, Hori O, Stern DM, Hartmann E, Ogawa S, Tohyama M. 1999. Stress-associated endoplasmic reticulum protein 1 (Serp1)/ribosome-associated membrane protein 4 (Ramp4) stabilizes membrane proteins during stress and facilitates subsequent glycosylation. J Cell Biol 147:1195–1204
  • Yamamoto H, Fujita H, Kida Y, Sakaguchi M. 2012. Pleiotropic effects of membrane cholesterol upon translocation of protein across the endoplasmic reticulum membrane. Biochemistry 51:3596–3605
  • Yamamoto H, Kida Y, Sakaguchi M. 2013. Phosphatidylserine-binding protein lactadherin inhibits protein translocation across the ER membrane. Biochem Biophys Res Commun 434:620–626
  • Young BP. 2001. Sec63p and Kar2p are required for the translocation of SRP-dependent precursors into the yeast endoplasmic reticulum in vivo. EMBO J 20:262–271
  • Yuan J, Zweers J, Dijl J, Dalbey R. 2010. Protein transport across and into cell membranes in bacteria and archaea. Cell Mol Life Sci 67:179–199
  • Zafar S, Nasir A, Bokhari H. 2011. Computational analysis reveals abundance of potential glycoproteins in Archaea, Bacteria and Eukarya. Bioinformation 6:352–355
  • Zhang X, Rashid R, Wang K, Shan So. 2010. Sequential checkpoints govern substrate selection during cotranslational protein targeting. Science 328:757–760
  • Zhang X, Schaffitzel C, Ban N, Shan S-o. 2009a. Multiple conformational switches in a GTPase complex control co-translational protein targeting. Proc Natl Acad Sci USA 106:1754–1759
  • Zhang Y-J, Tian H-F, Wen J-F. 2009b. The evolution of YidC/Oxa/Alb3 family in the three domains of life: A phylogenomic analysis. BMC Evol Biol 9:137
  • Zhao X, Jäntti J. 2009. Functional characterization of the trans-membrane domain interactions of the Sec61 protein translocation complex beta-subunit. BMC Cell Biol 10:76
  • Zheng N, Gierasch LM. 1997. Domain interactions in E. coli SRP: stabilization of M domain by RNA is required for effective signal sequence modulation of NG domain. Mol Cell 1:79–87
  • Zhou Y, Xue S, Yang JJ. 2013. Calciomics: Integrative studies of Ca2+-binding proteins and their interactomes in biological systems. Metallomics 5:29–42
  • Zimmer J, Nam Y, Rapoport TA. 2008. Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature 455:936–943
  • Zimmermann R, Eyrisch S, Ahmad M, Helms V. 2011. Protein translocation across the ER membrane. Biochim Biophys Acta 1808:912–924
  • Zimmermann R, Sagstetter M, Lewis M, Pelham HR. 1988. Seventy-kilodalton heat shock proteins and an additional component from reticulocyte lysate stimulate import of M13 procoat protein into microsomes. EMBO J 7:2875–2880
  • Zopf D, Bernstein H, Johnson A, Walter P. 1990. The methionine-rich domain of the 54 kd protein subunit of the signal recognition particle contains an RNA binding site and can be crosslinked to a signal sequence. EMBO J 9:4511–4517
  • Zopf D, Bernstein HD, Walter P. 1993. GTPase domain of the 54-kD subunit of the mammalian signal recognition particle is required for protein translocation but not for signal sequence binding. J Cell Biol 120:1113–1121
  • Zwieb C, Bhuiyan S. 2010. Archaea signal recognition particle shows the way. Archaea 2010:485051
  • Zwizinski C, Wickner W. 1980. Purification and characterization of leader (signal) peptidase from Escherichia coli. J Biol Chem 255:7973–7977

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.