1,490
Views
14
CrossRef citations to date
0
Altmetric
Review Article

Solid-state NMR structures of integral membrane proteins

Pages 156-178 | Received 28 Sep 2015, Accepted 30 Dec 2015, Published online: 08 Feb 2016

References

  • Agarwal V, Penzel S, Szekely K, Cadalbert R, Testori E, Oss A, et al. 2014. De novo 3D structure determination from sub-milligram protein samples by solid-state 100 kHz MAS NMR spectroscopy. Angew Chem Int Ed 53:12253–12256
  • Ahuja S, Jahr N, Im SC, Vivekanandan S, Popovych N, Le Clair SV, et al. 2013. A model of the membrane-bound cytochrome b5-cytochrome P450 complex from NMR and mutagenesis data. J Biol Chem 288:22080–22095
  • Akbey U, Franks WT, Linden A, Orwick-Rydmark M, Lange S, Oschkinat H. 2013. Dynamic nuclear polarization enhanced NMR in the solid-state. Top Curr Chem 338:181–228
  • André M, Piotto M, Caldarelli S, Dumez JN. 2015. Ultrafast high-resolution magic-angle-spinning NMR spectroscopy. Analyst 140:3942–3946
  • Andrew ER, Bradbury A, Eades RG. 1958. Nuclear magnetic resonance spectra from a crystal rotated at high speed. Nature 182:1659
  • Andrew ER, Bradbury A, Eades RG. 1959. Removal of dipolar broadening of nuclear magnetic resonance spectra of solids by specimen rotation. Nature 183:1802
  • Andrew ER. 2010. Magic angle spinning. In McDermott A, ed. Solid state NMR studies of biopolymers. Chichester, UK: John Wiley & Sons, 83–97
  • Arora A. 2013. Solution NMR spectroscopy for the determination of structures of membrane proteins in a lipid environment. Methods Mol Biol 974:389–413
  • Astrof NS, Griffin RG. 2002. Soft-triple resonance solid-state NMR experiments for assignments of U-13C, 15N labeled peptides and proteins. J Magn Reson 158:157–163
  • Bahar I, Lezon TR, Bakan A, Shrivastava IH. 2010. Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins. Chem Rev 110:1463–1497
  • Bakheet TM, Doig AJ. 2009. Properties and identification of human protein drug targets. Bioinformatics 25:451–457
  • Banigan JR, Gayen A, Traaseth NJ. 2013. Combination of 15N reverse labeling and afterglow spectroscopy for assigning membrane protein spectra by magic-angle-spinning solid-state NMR: application to the multidrug resistance protein EmrE. J Biomol NMR 55:391–399
  • Barnes AB, Mak-Jurkauskas ML, Matsuki Y, Bajaj VS, van der Wel PC, Derocher R, et al. 2009. Cryogenic sample exchange NMR probe for magic angle spinning dynamic nuclear polarization. J Magn Reson 198:261–270
  • Bayburt TH, Sligar SG. 2010. Membrane protein assembly into nanodiscs. FEBS Lett 584:1721–1727
  • Bayrhuber M, Meins T, Habeck M, Becker S, Giller K, Villinger S, et al. 2008. Structure of the human voltage-dependent anion channel. Proc Natl Acad Sci USA 105:15370–15375
  • Bechinger B, Gierasch LM, Montal M, Zasloff M, Opella SJ. 1996. Orientations of helical peptides in membrane bilayers by solid state NMR spectroscopy. Solid State Nucl Magn Reson 7:185–191
  • Bloembergen N. 1949. On the interaction of nuclear spins in a crystalline lattice. Physica 15:386–426
  • Böckmann A, Ernst M, Meier BH. 2015. Spinning proteins, the faster, the better? J Magn Reson 253:71–79
  • Brown LS, Ladizhansky V. 2015. Membrane proteins in their native habitat as seen by solid-state NMR spectroscopy. Protein Sci 24:1333–1346
  • Buck-Koehntop BA, Mascioni A, Buffy JJ, Veglia G. 2005. Structure, dynamics, and membrane topology of stannin: a mediator of neuronal cell apoptosis induced by trimethyltin chloride. J Mol Biol 354:652–665
  • Cady SD, Goodman C, Tatko CD, DeGrado WF, Hong M. 2007. Determining the orientation of uniaxially rotating membrane proteins using unoriented samples: A 2H, 13C, and 15N solid-state NMR investigation of the dynamics and orientation of a transmembrane helical bundle. J Am Chem Soc 129:5719–5729
  • Cady SD, Hong M. 2008a. Simultaneous extraction of multiple orientational constraints of membrane proteins by 13C-detected N-H dipolar couplings under magic angle spinning. J Magn Reson 191:219–225
  • Cady SD, Hong M. 2008b. Amantadine-induced conformational and dynamical changes of the influenza M2 transmembrane proton channel. Proc Natl Acad Sci USA 105:1483–1488
  • Cady SD, Mishanina TV, Hong M. 2009. Structure of amantadine-bound M2 transmembrane peptide of influenza A in lipid bilayers from magic-angle-spinning solid-state NMR: the role of Ser31 in amantadine binding. J Mol Biol 385:1127–1141
  • Cady SD, Schmidt-Rohr K, Wang J, Soto CS, Degrado WF, Hong M. 2010. Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature 463:689–692
  • Chen Y, Zhang Z, Tang X, Li J, Glaubitz C, Yang J. 2014. Conformation and topology of diacylglycerol kinase in E. coli membranes revealed by solid-state NMR spectroscopy. Angew Chem Int Ed Engl 53:5624–5628
  • Cheng X, Jo S1, Qi Y, Marassi FM, Im W. 2015. Solid-state NMR-restrained ensemble dynamics of a membrane protein in explicit membranes. Biophys J 108:1954–1962
  • Concistrè M, Johannessen OG, Carignani E, Geppi M, Levitt MH. 2013. Magic-angle spinning NMR of cold samples. Acc Chem Res 46:1914–1922
  • Cross TA, Ekanayake V, Paulino J, Wright A. 2014. Solid state NMR: the essential technology for helical membrane protein structural characterization. J Magn Reson 239:100–109
  • Das R, Baker D. 2008. Macromolecular modeling with rosetta. Annu Rev Biochem 77:363–382
  • Das BB, Nothnagel HJ, Lu GJ, Son WS, Tian Y, Marassi FM, Opella SJ. 2012. Structure determination of a membrane protein in proteoliposomes. J Am Chem Soc 134:2047–2056
  • Das BB, Lin EC, Opella SJ. 2013. Experiments optimized for magic angle spinning and oriented sample solid-state NMR of proteins. J Phys Chem B 117:12422–12431
  • Das BB, Zhang H, Opella SJ. 2014. Dipolar Assisted Assignment Protocol (DAAP) for MAS solid-state NMR of rotationally aligned membrane proteins in phospholipid bilayers. J Magn Reson 242:224–232
  • Das N, Dai J, Hung I, Rajagopalan MR, Zhou HX, Cross TA. 2015a. Structure of CrgA, a cell division structural and regulatory protein from Mycobacterium tuberculosis, in lipid bilayers. Proc Natl Acad Sci USA 112:E119–126
  • Das BB, Park SH, Opella SJ. 2015b. Membrane protein structure from rotational diffusion. Biochim Biophys Acta 1848(1PtB):229–245
  • De Angelis AA, Howell SC, Nevzorov AA, Opella SJ. 2006. Structure determination of a membrane protein with two trans-membrane helices in aligned phospholipid bicelles by solid-state NMR spectroscopy. J Am Chem Soc 128:12256–12267
  • De Angelis AA, Opella SJ. 2007. Bicelle samples for solid-state NMR of membrane proteins. Nat Protoc 2:2332–2338
  • Diller A, Loudet C, Aussenac F, Raffard G, Fournier S, Laguerre M, et al. 2009. Bicelles: a natural ‘molecular goniometer’ for structural, dynamical and topological studies of molecules in membranes. Biochimie 91:744–751
  • Ding X, Zhao X, Watts A. 2013a. G-protein-coupled receptor structure, ligand binding and activation as studied by solid-state NMR spectroscopy. Biochem J 450:443–457
  • Ding Y, Yao Y, Marassi FM. 2013b. Membrane protein structure determination in membrana. Acc Chem Res 46:2182–2190
  • Drews J. 2000. Drug discovery: a historical perspective. Science 287:1960–1964
  • Dürr UH, Gildenberg M, Ramamoorthy A. 2012. The magic of bicelles lights up membrane protein structure. Chem Rev 112:6054–6074
  • Dürr UH, Soong R, Ramamoorthy A. 2013. When detergent meets bilayer: birth and coming of age of lipid bicelles. Prog Nucl Magn Reson Spectrosc 69:1–22
  • Dvinskikh SV, Yamamoto K, Ramamoorthy A. 2006. Heteronuclear isotropic mixing separated local field NMR spectroscopy. J Chem Phys 125:34507
  • Edwards R, Madine J, Fielding L, Middleton DA. 2010. Measurement of multiple torsional angles from one-dimensional solid-state NMR spectra: application to the conformational analysis of a ligand in its biological receptor site. Phys Chem Chem Phys 12:13999–14008
  • Esteban-Martín S, Strandberg E, Salgado J, Ulrich AS. 2010. Solid state NMR analysis of peptides in membranes: influence of dynamics and labeling scheme. Biochim Biophys Acta 1798:252–257
  • Fagerberg L, Jonasson K, von Heijne G, Uhlén M, Berglund L. 2010. Prediction of the human membrane proteome. Proteomics 10:1141–1149
  • Filipp FV, Sinha N, Jairam L, Bradley J, Opella SJ. 2009. Labeling strategies for 13C-detected aligned-sample solid-state NMR of proteins. J Magn Reson 201:121–130
  • Franks WT, Linden AH, Kunert B, van Rossum BJ, Oschkinat H. 2012. Solid-state magic-angle spinning NMR of membrane proteins and protein-ligand interactions. Eur J Cell Biol 91:340–348
  • Fu R, Cotten M, Cross TA. 2000. Inter- and intramolecular distance measurements by solid-state MAS NMR: determination of gramicidin A channel dimer structure in hydrated phospholipid bilayers. J Biomol NMR 16:261–268
  • Gopinath T, Mote KR, Veglia G. 2011. Proton evolved local field solid-state nuclear magnetic resonance using Hadamard encoding: theory and application to membrane proteins. J Chem Phys 135:074503
  • Gopinath T, Mote KR, Veglia G. 2013. Sensitivity and resolution enhancement of oriented solid-state NMR: application to membrane proteins. Prog Nucl Magn Reson Spectrosc 75:50–68
  • Gopinath T, Mote KR, Veglia G. 2015. Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples. J Biomol NMR 62:53–61
  • Gopinath T, Veglia G. 2015. Multiple acquisition of magic angle spinning solid-state NMR experiments using one receiver: application to microcrystalline and membrane protein preparations. J Magn Reson 253:143–153
  • Grommek A, Meier BH, Ernst M. 2006. Distance information from proton-driven spin diffusion under MAS. Chem Phys Lett 427:404–409
  • Gullion T, Schaefer J. 1989. Rotational-echo double-resonance NMR. J Magn Reson 81:196–200
  • Hansen SK, Bertelsen K, Paaske B, Nielsen NC, Vosegaard T. 2015. Solid-state NMR methods for oriented membrane proteins. Prog Nucl Magn Reson Spectrosc 88–89:48–85
  • Hartmann SR, Hahn EL. 1962. Nuclear double resonance in the rotating frame. Phys Rev 128:2042
  • Hashi K, Ohki S, Matsumoto S, Nishijima G, Goto A, Deguchi K, et al. 2015. Achievement of 1020MHz NMR. J Magn Reson 256:30–33
  • Hennel JW, Klinowski J. 2005. Magic angle spinning: A historical perspective. In Klinowski J, ed. New techniques in solid-state NMR. Berlin: Springer, 1–14
  • Herráez A. 2006. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ 34:255–261
  • Higman VA, Flinders J, Hiller M, Jehle S, Markovic S, Fiedler S, et al. 2009. Assigning large proteins in the solid state: a MAS NMR resonance assignment strategy using selectively and extensively 13C-labelled proteins. J Biomol NMR 44:245–260
  • Hing AW, Vega S, Schaefer J. 1992. Transferred-echo double-resonance NMR. J Magn Reson 96:205–209
  • Hiruma-Shimizu K, Kalverda AP, Henderson PJ, Homans SW, Patching SG. 2014. Synthesis of uniformly deuterated n-dodecyl-β-D-maltoside (d39-DDM) for solubilization of membrane proteins in TROSY NMR experiments. J Labelled Comp Radiopharm 57:737–743
  • Hiruma-Shimizu K, Shimizu H, Thompson GS, Kalverda AP, Patching SG. 2015. Deuterated detergents for structural and functional studies of membrane proteins: properties, chemical synthesis and applications. Mol Membr Biol. 2015. [Epub ahead of print]. DOI: 10.3109/09687688.2015.1125536
  • Hong M, Zhang Y, Hu F. 2012. Membrane protein structure and dynamics from NMR spectroscopy. Annu Rev Phys Chem 63:1–24
  • Hopkins AL, Groom CR. 2002. The druggable genome. Nat Rev Drug Discov 1:727–730
  • Hu J, Asbury T, Achuthan S, Li C, Bertram R, Quine JR, et al. 2007. Backbone structure of the amantadine-blocked trans-membrane domain M2 proton channel from Influenza A virus. Biophys J 92:4335–4343
  • Huber M, Böckmann A, Hiller S, Meier BH. 2012. 4D solid-state NMR for protein structure determination. Phys Chem Chem Phys 14:5239–5246
  • Inagaki S, Ghirlando R, Grisshammer R. 2013. Biophysical characterization of membrane proteins in nanodiscs. Methods 59:287–300
  • Jang H, Ma B, Nussinov R. 2007. Conformational study of the protegrin-1 (PG-1) dimer interaction with lipid bilayers and its effect. BMC Struct Biol 7:21
  • Jean-Francois FL, Dai J, Yu L, Myrick A, Rubin E, Fajer PG, et al. 2014. Binding of MgtR, a Salmonella transmembrane regulatory peptide, to MgtC, a Mycobacterium tuberculosis virulence factor: a structural study. J Mol Biol 426:436–446
  • Johansson AC, Lindahl E. 2009. Protein contents in biological membranes can explain abnormal solvation of charged and polar residues. Proc Natl Acad Sci USA 106:15684–15689
  • Judge PJ, Watts A. 2011. Recent contributions from solid-state NMR to the understanding of membrane protein structure and function. Curr Opin Chem Biol 15:690–695
  • Judge PJ, Taylor GF, Dannatt HR, Watts A. 2015. Solid-state nuclear magnetic resonance spectroscopy for membrane protein structure determination. Methods Mol Biol 1261:331–347
  • Jung KH, Trivedi VD, Spudich JL. 2003. Demonstration of a sensory rhodopsin in eubacteria. Mol Microbiol 47:1513–1522
  • Kalverda AP, Gowdy J, Thompson GS, Homans SW, Henderson PJ, Patching SG. 2014. TROSY NMR with a 52 kDa sugar transport protein and the binding of a small-molecule inhibitor. Mol Membr Biol 31:131–140
  • Ketchem RR, Hu W, Cross TA. 1993. High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science 261:1457–1460
  • Ketchem RR, Lee KC, Huo S, Cross TA. 1996. Macromolecular structural elucidation with solid-state NMR-derived orientational constraints. J Biomol NMR 8:1–14
  • Kim Y. 2006. Solid-state NMR studies of membrane proteins using phospholipid bicelles. Bull Korean Chem Soc 27:386–388
  • Kim HJ, Howell SC, Van Horn WD, Jeon YH, Sanders CR. 2009. Recent advances in the application of solution NMR spectroscopy to multi-span integral membrane proteins. Prog Nucl Magn Reson Spectrosc 55:335–360
  • Klammt C, Maslennikov I, Bayrhuber M, Eichmann C, Vajpai N, Chiu EJ, et al. 2012. Facile backbone structure determination of human membrane proteins by NMR spectroscopy. Nat Methods 9:834–839
  • Klepper J, Voit T. 2002. Facilitated glucose transporter protein type 1 (GLUT1) deficiency syndrome: impaired glucose transport into brain – a review. Eur J Pediatr 161:295–304
  • Koers EJ, van der Cruijsen EA, Rosay M, Weingarth M, Prokofyev A, Sauvée C, et al. 2014. NMR-based structural biology enhanced by dynamic nuclear polarization at high magnetic field. J Biomol NMR 60:157–168
  • Kurze AK, Galliciotti G, Heine C, Mole SE, Quitsch A, Braulke T. 2010. Pathogenic mutations cause rapid degradation of lysosomal storage disease-related membrane protein CLN6. Hum Mutat 31:E1163–E1174
  • Ladizhansky V. 2009. Homonuclear dipolar recoupling techniques for structure determination in uniformly 13C-labeled proteins. Solid State Nucl Magn Reson 36:119–128
  • Lakatos A, Mörs K, Glaubitz C. 2012. How to investigate interactions between membrane proteins and ligands by solid-state NMR. Methods Mol Biol 914:65–86
  • Lalli D, Schanda P, Chowdhury A, Retel J, Hiller M, Higman VA, et al. 2011. Three-dimensional deuterium-carbon correlation experiments for high-resolution solid-state MAS NMR spectroscopy of large proteins. J Biomol NMR 51:477–485
  • Lange A, Luca S, Baldus M. 2002. Structural constraints from proton-mediated rare-spin correlation spectroscopy in rotating solids. J Am Chem Soc 124:9704–9705
  • Lin MT, Sperling LJ, Frericks Schmidt HL, Tang M, Samoilova RI, Kumasaka T, et al. 2011. A rapid and robust method for selective isotope labeling of proteins. Methods 55:370–378
  • Lin HJ, Huang TC, Muthusamy S, Lee JF, Duann YF, Lin CH. 2012. Piscidin-1, an antimicrobial peptide from fish (hybrid striped bass Morone saxatilis × M. chrysops), induces apoptotic and necrotic activity in HT1080 cells. Zoolog Sci 29:327–332
  • Lindskog C. 2015. The potential clinical impact of the tissue-based map of the human proteome. Expert Rev Proteomics 12:213–215
  • Liu J, Rost B. 2001. Comparing function and structure between entire proteomes. Prot Sci 10:1970–1979
  • Lopez JJ, Mason AJ, Kaiser C, Glaubitz C. 2007. Separated local field NMR experiments on oriented samples rotating at the magic angle. J Biomol NMR 37:97–111
  • Lopez JJ, Shukla AK, Reinhart C, Schwalbe H, Michel H, Glaubitz C. 2008. The structure of the neuropeptide bradykinin bound to the human G-protein coupled receptor bradykinin B2 as determined by solid-state NMR spectroscopy. Angew Chem Int Ed 47:1668–1671
  • Loudet C, Manet S, Gineste S, Oda R, Achard MF, Dufourc EJ. 2007. Biphenyl bicelle disks align perpendicular to magnetic fields on large temperature scales: a study combining synthesis, solid-state NMR, TEM, and SAXS. Biophys J 92:3949–3959
  • Lowe IJ. 1959. Free induction decays of rotating solids. Phys Rev Lett 2:285–287
  • Lu GJ, Tian Y, Vora N, Marassi FM, Opella SJ. 2013. The structure of the mercury transporter MerF in phospholipid bilayers: a large conformational rearrangement results from N-terminal truncation. J Am Chem Soc 135:9299–9302
  • Lu GJ, Opella SJ. 2014. Resonance assignments of a membrane protein in phospholipid bilayers by combining multiple strategies of oriented sample solid-state NMR. J Biomol NMR 58:69–81
  • Lundstrom K. 2006. Latest development in drug discovery on G protein-coupled receptors. Curr Protein Pept Sci 7:465–470
  • Luo W, Hong M. 2006. Determination of the oligomeric number and intermolecular distances of membrane protein assemblies by anisotropic 1H-driven spin diffusion NMR spectroscopy. J Am Chem Soc 128:7242–7251
  • Luo W, Mani R, Hong M. 2007. Sidechain conformation and gating of the M2 transmembrane peptide proton channel of influenza A virus from solid-state NMR. J Phys Chem 111:10825–10832
  • Maciejko J, Mehler M, Kaur J, Lieblein T, Morgner N, Ouari O, et al. 2015. Visualizing specific cross-protomer interactions in the homo-oligomeric membrane protein proteorhodopsin by DNP-enhanced solid-state NMR. J Am Chem Soc 137:9032–9043
  • Mani R, Tang M, Wu X, Buffy JJ, Waring AJ, Sherman MA, Hong M. 2006. Membrane-bound dimer structure of a beta-hairpin antimicrobial peptide from rotational-echo double-resonance solid-state NMR. Biochemistry 45:8341–8349
  • Marassi FM, Opella SJ. 2000. A solid-state NMR index of helical membrane protein structure and topology. J Magn Reson 144:150–155
  • Marassi FM, Opella SJ. 2003. Simultaneous assignment and structure determination of a membrane protein from NMR orientational restraints. Protein Sci 12:403–411
  • Marassi FM, Das BB, Lu GJ, Nothnagel HJ, Park SH, Son WS, et al. 2011. Structure determination of membrane proteins in five easy pieces. Methods 55:363–369
  • Marcotte I, Auger M. 2005. Bicelles as model membranes for solid- and solution-state NMR studies of membrane peptides and proteins. Concepts in Magnetic Resonance Part A 24A:17–37
  • Maslennikov I, Choe S. 2013. Advances in NMR structures of integral membrane proteins. Curr Opin Struct Biol 23:555–562
  • Miao Y, Cross TA, Fu R. 2013. Identifying inter-residue resonances in crowded 2D (13)C- (13)C chemical shift correlation spectra of membrane proteins by solid-state MAS NMR difference spectroscopy. J Biomol NMR 56:265–273
  • Middleton DA, Ahmed Z, Glaubitz C, Watts A. 2000. REDOR NMR on a hydrophobic peptide in oriented membranes. J Magn Reson 147:366–370
  • Middleton DA, Hughes E, Esmann M. 2011. The conformation of ATP within the Na, K-ATPase nucleotide site: a statistically constrained analysis of REDOR solid-state NMR data. Angew Chem Int Ed 50:7041–7044
  • Middleton DA, Patching SG. 2013. Solid-state NMR spectroscopy in drug design and discovery. In Andrushko V & Andrushko N, eds. Stereoselective synthesis of drugs and natural products. Chichester, UK: John Wiley & Sons, Ltd (Chapter 51)
  • Mote KR, Gopinath T, Traaseth NJ, Kitchen J, Gor'kov PL, Brey WW, Veglia G. 2011. Multidimensional oriented solid-state NMR experiments enable the sequential assignment of uniformly 15N labeled integral membrane proteins in magnetically aligned lipid bilayers. J Biomol NMR 51:339–346
  • Mote KR, Gopinath T, Veglia G. 2013. Determination of structural topology of a membrane protein in lipid bilayers using polarization optimized experiments (POE) for static and MAS solid state NMR spectroscopy. J Biomol NMR 57:91–102
  • Murray DT, Das N, Cross TA. 2013. Solid state NMR strategy for characterizing native membrane protein structures. Acc Chem Res 46:2172–2181
  • Murray DT, Li C, Gao FP, Qin H, Cross TA. 2014a. Membrane protein structural validation by oriented sample solid-state NMR: diacylglycerol kinase. Biophys J 106:1559–1569
  • Murray DT, Hung I, Cross TA. 2014b. Assignment of oriented sample NMR resonances from a three transmembrane helix protein. J Magn Reson 240:34–44
  • Nand D, Cukkemane A, Becker S, Baldus M. 2012. Fractional deuteration applied to biomolecular solid-state NMR spectroscopy. J Biomol NMR 52:91–101
  • Nevzorov AA, Opella SJ. 2003. A “magic sandwich” pulse sequence with reduced offset dependence for high-resolution separated local field spectroscopy. J Magn Reson 164:182–186
  • Nevzorov AA, Mesleh MF, Opella SJ. 2004. Structure determination of aligned samples of membrane proteins by NMR spectroscopy. Magn Reson Chem 42:162–171
  • Nevzorov AA, Opella SJ. 2007. Selective averaging for high-resolution solid-state NMR spectroscopy of aligned samples. J Magn Reson 185:59–70
  • Nicholson LK, Teng Q, Cross TA. 1991. Solid-state nuclear magnetic resonance derived model for dynamics in the polypeptide backbone of the gramicidin A channel. J Mol Biol 218:621–637
  • Nietlispach D, Gautier A. 2011. Solution NMR studies of polytopic α-helical membrane proteins. Curr Opin Struct Biol 21:497–508
  • Nishimura K, Kim S, Zhang L, Cross TA. 2002. The closed state of a H+ channel helical bundle combining precise orientational and distance restraints from solid state NMR. Biochemistry 41:13170–13177
  • Nolandt OV, Walther TH, Grage SL, Ulrich AS. 2012. Magnetically oriented dodecylphosphocholine bicelles for solid-state NMR structure analysis. Biochim Biophys Acta 1818:1142–1147
  • North CL, Cross TA. 1993. Analysis of polypeptide backbone T1 relaxation data using an experimentally derived model. J Magn Reson 101B:35–43
  • North CL, Cross TA. 1995. Correlations between function and dynamics: time scale coincidence for ion translocation and molecular dynamics in the gramicidin channel backbone. Biochemistry 34:5883–5895
  • Opella SJ, Marassi FM, Gesell JJ, Valente AP, Kim Y, Oblatt-Montal M, Montal M. 1999. Structures of the M2 channel-lining segments from nicotinic acetylcholine and NMDA receptors by NMR spectroscopy. Nat Struct Biol 6:374–379
  • Opella SJ. 2013a. Structure determination of membrane proteins by nuclear magnetic resonance spectroscopy. Annu Rev Anal Chem (Palo Alto Calif) 6:305–328
  • Opella SJ. 2013b. Structure determination of membrane proteins in their native phospholipid bilayer environment by rotationally aligned solid-state NMR spectroscopy. Acc Chem Res 46:2145–2153
  • Opella SJ. 2014. The development of solid-state NMR of membrane proteins. Biomed Spectrosc Imaging 3:81–105
  • Opella SJ. 2015. Solid-state NMR and membrane proteins. J Magn Reson 253:129–137
  • Overington JP, Al-Lazikani B, Hopkins AL. 2006. How many drug targets are there? Nat Rev Drug Discov 5:993–996
  • Oxenoid K, Chou JJ. 2005. The structure of phospholamban pentamer reveals a channel-like architecture in membranes. Proc Natl Acad Sci USA 102:10870–10875
  • Page RC, Moore JD, Nguyen HB, Sharma M, Chase R, Gao FP, et al. 2006. Comprehensive evaluation of solution nuclear magnetic resonance spectroscopy sample preparation for helical integral membrane proteins. J Struct Funct Genomics 7:51–64
  • Park SH, Mrse AA, Nevzorov AA, Mesleh MF, Oblatt-Montal M, Montal M, Opella SJ. 2003. Three-dimensional structure of the channel-forming trans-membrane domain of virus protein “u” (Vpu) from HIV-1. J Mol Biol 333:409–424
  • Park SH, De Angelis AA, Nevzorov AA, Wu CH, Opella SJ. 2006. Three-dimensional structure of the transmembrane domain of Vpu from HIV-1 in aligned phospholipid bicelles. Biophys J 91:3032–3042
  • Park SH, Loudet C, Marassi FM, Dufourc EJ, Opella SJ. 2008. Solid-state NMR spectroscopy of a membrane protein in biphenyl phospholipid bicelles with the bilayer normal parallel to the magnetic field. J Magn Reson 193:133–138
  • Park SH, Das BB, De Angelis AA, Scrima M, Opella SJ. 2010a. Mechanically, magnetically, and “rotationally aligned” membrane proteins in phospholipid bilayers give equivalent angular constraints for NMR structure determination. J Phys Chem B 114:13995–14003
  • Park SH, Marassi FM, Black D, Opella SJ. 2010b. Structure and dynamics of the membrane-bound form of Pf1 coat protein: implications of structural rearrangement for virus assembly. Biophys J 99:1465–1474
  • Park SH1, Das BB, Casagrande F, Tian Y, Nothnagel HJ, Chu M, et al. 2012. Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491:779–783
  • Partridge AW, Therien AG, Deber CM. 2002. Polar mutations in membrane proteins as a biophysical basis for disease. Biopolymers 66:350–358
  • Patching SG, Henderson PJ, Herbert RB, Middleton DA. 2008. Solid-state NMR spectroscopy detects interactions between tryptophan residues of the E. coli sugar transporter GalP and the alpha-anomer of the D-glucose substrate. J Am Chem Soc 130:1236–1244
  • Patching SG. 2011. NMR structures of polytopic integral membrane proteins. Mol Membr Biol 28:370–397
  • Patching SG, Henderson PJ, Sharples DJ, Middleton DA. 2013. Probing the contacts of a low-affinity substrate with a membrane-embedded transport protein using 1H-13C cross-polarisation magic-angle spinning solid-state NMR. Mol Membr Biol 30:129–137
  • Patching SG. 2015. Roles of facilitative glucose transporter GLUT1 in [18F]FDG positron emission tomography (PET) imaging of human diseases. J Diagnostic Imaging Ther 2:30–102
  • Peng X, Libich D, Janik R, Harauz G, Ladizhansky V. 2008. Dipolar chemical shift correlation spectroscopy for homonuclear carbon distance measurements in proteins in the solid state: application to structure determination and refinement. J Am Chem Soc 130:359–369
  • Perrin BS Jr, Tian Y, Fu R, Grant CV, Chekmenev EY, Wieczorek WE, et al. 2014. High-resolution structures and orientations of antimicrobial peptides piscidin 1 and piscidin 3 in fluid bilayers reveal tilting, kinking, and bilayer immersion. J Am Chem Soc 136:3491–3504
  • Pines A, Gibby MG, Waugh JS. 1973. Proton-enhanced NMR of dilute spins in solids. J Chem Phys 59:569–590
  • Popot JL. 2010. Amphipols, nanodiscs, and fluorinated surfactants: three nonconventional approaches to studying membrane proteins in aqueous solutions. Annu Rev Biochem 79:737–775
  • Prosser RS, Hunt SA, DiNatale JA, Vold RR. 1996. Magnetically aligned membrane model systems with positive order parameter: switching the sign of Szz with paramagnetic ions. J Am Chem Soc 118:269–270
  • Quadri M, Federico A, Zhao T, Breedveld GJ, Battisti C, Delnooz C, et al. 2012. Mutations in SLC30A10 cause Parkinsonism and dystonia with hypermanganesemia, polycythemia, and chronic liver disease. Am J Hum Genet 90:467–477
  • Radoicic J, Lu GJ, Opella SJ. 2014. NMR structures of membrane proteins in phospholipid bilayers. Q Rev Biophys 47:249–283
  • Ragona F, Matricardi S, Castellotti B, Patrini M, Freri E, Binelli S, Granata T. 2014. Refractory absence epilepsy and glut1 deficiency syndrome: a new case report and literature review. Neuropediatrics 45:328–332
  • Rask-Andersen M, Almén MS, Schiöth HB. 2011. Trends in the exploitation of novel drug targets. Nat Rev Drug Discov 10:579–590
  • Reckel S, Hiller S. 2013. Perspectives of solution NMR spectroscopy for structural and functional studies of integral membrane proteins. Mol Phys 111:843–849
  • Reif B. 2012. Ultra-high resolution in MAS solid-state NMR of perdeuterated proteins: implications for structure and dynamics. J Magn Reson 216:1–12
  • Rosenbaum DM, Rasmussen SG, Kobilka BK. 2009. The structure and function of G-protein-coupled receptors. Nature 459:356–363
  • Roumestand C, Louis V, Aumelas A, Grassy G, Calas B, Chavanieu A. 1998. Oligomerization of protegrin-1 in the presence of DPC micelles. A proton high-resolution NMR study. FEBS Lett 421:263–267
  • Sanders CR, Schwonek JP. 1992. Characterization of magnetically orientable bilayers in mixtures of dihexanoylphosphatidylcholine and dimyristoylphosphatidylcholine by solid-state NMR. Biochemistry 31:8898–8905
  • Sanders CR, Myers JK. 2004. Disease-related misassembly of membrane proteins. Annu Rev Biophys Biomol Struct 33:25–51
  • Schnell JR, Chou JJ. 2008. Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451:591–595
  • Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM. 2003. The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160:65–73
  • Shahid SA, Bardiaux B, Franks WT, Krabben L, Habeck M, van Rossum BJ, Linke D. 2012. Membrane-protein structure determination by solid-state NMR spectroscopy of microcrystals. Nat Methods 9:1212–1217
  • Sharma M, Yi M, Dong H, Qin H, Peterson E, Busath DD, et al. 2010. Insight into the mechanism of the influenza A proton channel from a structure in a lipid bilayer. Science 330:509–512
  • Shen Y, Lange O, Delaglio F, Rossi P, Aramini JM, Liu G, et al. 2008. Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci USA 105:4685–4690
  • Shi L, Ladizhansky V. 2012. Magic angle spinning solid-state NMR experiments for structural characterization of proteins. Methods Mol Biol 895:153–165
  • Shukla HD, Vaitiekunas P, Cotter RJ. 2012. Advances in membrane proteomics and cancer biomarker discovery: current status and future perspective. Proteomics 12:3085–3104
  • Smith AN, Caporini MA, Fanucci GE, Long JR. 2015. A method for dynamic nuclear polarization enhancement of membrane proteins. Angew Chem Int Ed 54:1542–1546
  • Sperling LJ, Berthold DA, Sasser TL, Jeisy-Scott V, Rienstra CM. 2010. Assignment strategies for large proteins by magic-angle spinning NMR: the 21-kDa disulfide-bond-forming enzyme DsbA. J Mol Biol 399:268–282
  • Stejskal EO, Memory JD. 1994. High resolution NMR in the solid state: fundamentals of CP/MAS. New York: Oxford University Press
  • Stouffer AL, Acharya R, Salom D, Levine AS, Di Costanzo L, Soto CS, et al. 2008. Structural basis for the function and inhibition of an influenza virus proton channel. Nature 451:596–599
  • Striano P, Weber YG, Toliat MR, Schubert J, Leu C, Chaimana R, et al.; EPICURE Consortium. 2012. GLUT1 mutations are a rare cause of familial idiopathic generalized epilepsy. Neurology 78:557–562
  • Su Y, Andreas L, Griffin RG. 2015. Magic angle spinning NMR of proteins: high-frequency dynamic nuclear polarization and 1H detection. Annu Rev Biochem 84:465–497
  • Suls A, Mullen SA, Weber YG, Verhaert K, Ceulemans B, Guerrini R, et al. 2009. Early-onset absence epilepsy caused by mutations in the glucose transporter GLUT1. Ann Neurol 66:415–419
  • Takeda K. 2012. Microcoils and microsamples in solid-state NMR. Solid State Nucl Magn Reson 47–48:1–9
  • Takegoshi K, Nakamura S, Terao T. 2001. Dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344:631–637
  • Takegoshi K, Nakamura S, Terao T. 2003. 13C-1H dipolar-driven 13C-13C recoupling without 13C rf irradiation in nuclear magnetic resonance of rotating solids. J Chem Phys 118:2325
  • Tang M, Comellas G, Mueller LJ, Rienstra CM. 2010. High resolution 13C-detected solid-state NMR spectroscopy of a deuterated protein. J Biomol NMR 48:103–111
  • Tang M, Sperling LJ, Berthold DA, Schwieters CD, Nesbitt AE, Nieuwkoop AJ, et al. 2011. High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data. J Biomol NMR 51:227–233
  • Tang M, Comellas G, Rienstra CM. 2013a. Advanced solid-state NMR approaches for structure determination of membrane proteins and amyloid fibrils. Acc Chem Res 46:2080–2088
  • Tang M, Nesbitt AE, Sperling LJ, Berthold DA, Schwieters CD, Gennis RB, Rienstra CM. 2013b. Structure of the disulfide bond generating membrane protein DsbB in the lipid bilayer. J Mol Biol 425:1670–1682
  • Tapaneeyakorn S, Goddard AD, Oates J, Willis CL, Watts A. 2011. Solution- and solid-state NMR studies of GPCRs and their ligands. Biochim Biophys Acta 1808:1462–1475
  • Taylor RE. 2004. Setting up 13C CP/MAS experiments. Concept Magn Reson A 22A:37–49
  • Thurber KR, Tycko R. 2008. Biomolecular solid state NMR with magic-angle spinning at 25K. J Magn Reson 195:179–186
  • Tian Y, Lu GJ, Marassi FM, Opella SJ. 2014. Structure of the membrane protein MerF, a bacterial mercury transporter, improved by the inclusion of chemical shift anisotropy constraints. J Biomol NMR 60:67–71
  • Traaseth NJ, Shi L, Verardi R, Mullen DG, Barany G, Veglia G. 2009. Structure and topology of monomeric phospholamban in lipid membranes determined by a hybrid solution and solid-state NMR approach. Proc Natl Acad Sci USA 106:10165–10170
  • Triba MN, Devaux PF, Warschawski DE. 2006. Effects of lipid chain length and unsaturation on bicelles stability. A phosphorus NMR study. Biophys J 91:1357–1367
  • Tycko R. 2013. NMR at low and ultralow temperatures. Acc Chem Res 46:1923–1932
  • Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. 2015. Proteomics. Tissue-based map of the human proteome. Science 347:1260419
  • Valentine KG, Liu SF, Marassi FM, Veglia G, Opella SJ, Ding FX, et al. 2001. Structure and topology of a peptide segment of the 6th transmembrane domain of the Saccharomyces cerevisae alpha-factor receptor in phospholipid bilayers. Biopolymers 59:243–256
  • Verardi R, Shi L, Traaseth NJ, Walsh N, Veglia G. 2011. Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method. Proc Natl Acad Sci USA 108:9101–9106
  • Verardi R, Traaseth NJ, Masterson LR, Vostrikov VV, Veglia G. 2012. Isotope labeling for solution and solid-state NMR spectroscopy of membrane proteins. Adv Exp Med Biol 992:35–62
  • Vogeley L, Sineshchekov OA, Trivedi VD, Sasaki J, Spudich JL, Luecke H. 2004. Anabaena sensory rhodopsin: a photochromic color sensor at 2.0 A. Science 306:1390–1393
  • von Heijne G. 2007. The membrane protein universe: what’s out there and why bother? J Int Med 261:543–557
  • Wallin E, von Heijne G. 1998. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Prot Sci 7:1029–1038
  • Wang S, Kim SY, Jung KH, Ladizhansky V, Brown LS. 2011. A eukaryotic-like interaction of soluble cyanobacterial sensory rhodopsin transducer with DNA. J Mol Biol 411:449–462
  • Wang S, Munro RA, Shi L, Kawamura I, Okitsu T, Wada A, et al. 2013. Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein. Nat Methods 10:1007–1012
  • Wang S, Ladizhansky V. 2014. Recent advances in magic angle spinning solid state NMR of membrane proteins. Prog Nucl Magn Reson Spectrosc 82:1–26
  • Wang T, Williams JK, Schmidt-Rohr K, Hong M. 2015. Relaxation-compensated difference spin diffusion NMR for detecting 13C-13C long-range correlations in proteins and polysaccharides. J Biomol NMR 61:97–107
  • Ward ME, Brown LS, Ladizhansky V. 2015. Advanced solid-state NMR techniques for characterization of membrane protein structure and dynamics: application to Anabaena sensory rhodopsin. J Magn Reson 253:119–128
  • Warschawski DE, Arnold AA, Beaugrand M, Gravel A, Chartrand É, Marcotte I. 2011. Choosing membrane mimetics for NMR structural studies of transmembrane proteins. Biochim Biophys Acta 1808:1957–1974
  • Watanabe H, Koopmann TT, Le Scouarnec S, Yang T, Ingram CR, Schott JJ, et al. 2008. Sodium channel β1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. J Clin Invest 118:2260–2268
  • Watts A. 2005. Solid-state NMR in drug design and discovery for membrane-embedded targets. Nat Rev Drug Discov 4:555–568
  • Weber YG, Storch A, Wuttke TV, Brockmann K, Kempfle J, Maljevic S, et al. 2008. GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest 118:2157–2168
  • Whiles JA, Deems R, Vold RR, Dennis EA. 2002. Bicelles in structure-function studies of membrane-associated proteins. Bioorg Chem 30:431–442
  • Whittaker CA, Patching SG, Esmann M, Middleton DA. 2015. Ligand orientation in a membrane-embedded receptor site revealed by solid-state NMR with paramagnetic relaxation enhancement. Org Biomol Chem 13:2664–2668
  • Williamson PT, Verhoeven A, Miller KW, Meier BH, Watts A. 2007. The conformation of acetylcholine at its target site in the membrane-embedded nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 104:18031–18036
  • Williamson PTF. 2009. Solid-state NMR for the analysis of high-affinity ligand/receptor interactions. Concept Magn Reson A 34A:144–172
  • Wu CH, Ramamoorthy A, Opella SJ. 1994. High resolution heteronuclear dipolar solid-state NMR spectroscopy. J Magn Reson A 109:270–272
  • Yannoni CS. 1982. High-resolution NMR in solids: the CPMAS experiment. Acc Chem Res 15:201–208
  • Yao Y, Ding Y, Tian Y, Opella SJ, Marassi FM. 2013. Membrane protein structure determination: back to the membrane. Methods Mol Biol 1063:145–158
  • Yarov-Yarovoy V, Schonbrun J, Baker D. 2006. Multipass membrane protein structure prediction using Rosetta. Proteins 62:1010–1025
  • Zhao X. 2012. Protein structure determination by solid-state NMR. Top Curr Chem 326:187–213
  • Zhou HX, Cross TA. 2013a. Influences of membrane mimetic environments on membrane protein structures. Annu Rev Biophys 42:361–392
  • Zhou HX, Cross TA. 2013b. Modeling the membrane environment has implications for membrane protein structure and function: influenza A M2 protein. Protein Sci 22:381–394
  • Zoonens M, Popot JL. 2014. Amphipols for each season. J Membr Biol 247:759–796

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.