2
Views
7
CrossRef citations to date
0
Altmetric
Original Article

A Thermal Transition of Passive Calcium Efflux in Fragmented Sarcoplasmic Reticulum

Pages 271-290 | Published online: 09 Jul 2009

References

  • Banks P. An interaction between chromaffin granules and calcium ions. Biochem. J. 1966; 101: 18c–20c
  • Barlogie B., Hasselbach W., Makinose M. Activation of calcium efflux by ADP and inorganic phosphate. FEBS Letters 1971; 12: 267–268
  • Britton H. G. Permeability of the human red cell to labelled glucose. J. Physiol. 1964; 170: 1–20
  • Charnock J. S., et al. Activation energy and phospholipid requirements of membrane-bound adenosine triphosphatases. Arch. Biochem. Biophys. 1973; 159: 393–399
  • Davis D. G., Inesi G., Gulik-Krzy wicki T. Lipid molecular motion and enzymatic activity in sarcoplasmic reticulum membrane. Biochem. 1976; 15: 1271–1276
  • DeBoland A., Jilka R., Martonosi A. Passive Ca2+ permeability of phospholipid vesicles and sarcoplasmic reticulum membranes. J. Biol. Chem. 1975; 250: 7501–7510
  • Eletr S., Inesi G. Phospholipid orientation in sarcoplasmic membranes: Spin-label ESR and proton NMR studies. Biochim. Biophys. Acta 1972; 282: 174–179
  • Eletr S., Zakim D., Vessey D. A. A spin-label study of the role of phospholipids in the regulation of membrane-bound microsomal enzymes. J. Mol. Biol. 1973; 78: 351–362
  • Eyring H. The activated complex and absolute rate of chemical reactions. Chem. Rev. 1935; 17: 65
  • Fiehn W., et al. Lipids and fatty acids in sarcolemma. sarcoplasmic reticulum, and mitochondria from rat skeletal muscle. J. Biol. Chem. 1971; 246: 5617–5620
  • Freire E., Biltonen R. L. Equilibrium fluctuations in phospholipid bilayers. Biophys. J. 1978; 21: 126a
  • Oarrahan P. J., Rega A. F., Alonso G. L. The interaction of magnesium ions with the calcium pump of sarcoplasmic reticulum. Biochim. Biophys. Acta 1976; 448: 121–132
  • Hauser H., Phillips M. C., Stubbs M. Ion permeability of phospholipid bilayers. Nature 1972; 239: 342–344
  • Haynes D. H. l-Anilino-8-Naphthalenesulfonate: A fluorescent indicator of ion binding and electrostatic potential on the membrane surface. J. Mem. Biol. 1974; 17: 341–366
  • Haynes D. H. Divalent cation-ligand interactions of phospholipid membranes: Equilibria and kinetics. Metal-Ligand Interactions in Organic Chemistry and Biochemistry. Part 2, B. Pullman, N. Goldblum. D. Reidel Publishing Co., DordrechtHolland 1977; 189–212
  • Haynes D. H., Chiu V. C. K. Kinetics of passive calcium transport by skeletal sarcoplasmic reticulum. Calcium-Binding Proteins and Calcium Function, R. H. Wasserman, et al. North Holland, Amsterdam 1977; 137–146
  • Haynes D. H., Simkowitz P. l-Anilino-8-Naphthalenesulfonate: A fluorescent probe of ion and ionophore transport kinetics and transmembrane asymmetry. J. Mem. Biol. 1977; 33: 63–108
  • Ikemoto N. Transport and inhibitory Ca2+ binding sites on the ATPase enzyme isolated from the sarcoplasmic reticulum. J. Biol. Chem. 1975; 250: 7219–7224
  • Inesi G., Millman M., Eletr S. Temperature-induced transitions of function and structure in sarcoplasmic reticulum membranes. J. Mol. Biol. 1973; 81: 483–504
  • Jilka R. L., Martonosi A. Effect of the purified (Mg2+ + Ca2+)-activated ATPase of sarcoplasmic reticulum upon the passive Ca2+ permeability and ultrastructure of phospholipid vesicles. J. Biol. Chem. 1975; 250: 7511–7524
  • Kalbitzer H. R., Stehlik D., Hasselbach W. The binding of calcium and magnesium to sarcoplasmic reticulum vesicles as studied by manganese electron paramagnetic resonance. Eur. J. Biochem. 1978; 82: 245–255
  • Lansman J., Haynes D. Kinetics of a Ca2+ triggered membrane aggregation reaction of phospholipid membranes. Biochim. Biophys. Acta 1975; 394: 335–347
  • Layne E. Spectrophotometric and turbidometric methods for measuring proteins. Methods Enzymol, S. P. Colowick, N. O. Kaplan. Academic Press, Inc., New York 1957; vol. III
  • Lee A. G., et al. Clusters in lipid bilayers and the interpretation of thermal effects in biological membranes. Biochem. 1974; 13: 3699–3705
  • Makinose M. Calcium efflux dependent formation of ATP from ADP and orthophosphate by the membranes of the sacroplasmic vesicles. FEBS Letters 1971; 12: 269–270
  • Makinose M., Hasselbach W. ATP synthesis by the reverse of the sarcoplasmic calcium pump. FEBS Letters 1971; 12: 271–272
  • Martonosi A. Thermal analysis of sarcoplasmic reticulum membranes. FEBS Letters 1974; 47: 327–329
  • McKinley D., Meissner G. Sodium and potassium ion permeability of sarcoplasmic reticulum vesicles. FEBS Letters 1977; 82: 47–50
  • Morris S. J., et al. Kinetics and mechanism of divalent cation-induced aggregation of chromaffin granule membranes. 1979, In Press
  • Ohnishi S., Ito T. Clustering of lecithin molecules in phosphatidylserine membranes induced by calcium ion binding to phosphatidylserine. Biochem. Biophys. Res. Com. 1973; 51: 132–138
  • Verma S. P., Wallach D. F. H. Thermotropism in mixed lipid systems. Biophys. J. 1978; 21: 128a
  • Warren G. B., . Lipid substitution: The investigation of functional complexes of single species of phospholipid and a purified calcium transport protein. Membrane Proteins in Transport and Phosphoryiation, G. F. Azzone, et al. North Holland, Elsevier, Amsterdam 1974; 1–12
  • Warren G. B., et al. Reconstitution of a calcium pump using defined membrane components. Proc. Nat. Acad. Sci. 1974; 71: 622–626

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.