6
Views
17
CrossRef citations to date
0
Altmetric
Original Article

Large-Conductance Ca2+ -Activated K+ Channels in Freshly Dissociated Smooth Muscle Cells

&
Pages 83-110 | Published online: 09 Jul 2009

References

  • Aldrich R. W., Jr., Getting P. A., Thompson S. H. Inactivation of delayed outward current in molluscan neurone somata. J. Physiol. 1979; 291: 507–530
  • Bagby R. M., Young A. M., Dotson R. S., Fisher B. A., McKinnon K. Contraction of single smooth muscle cells from Bufo marinus stomach. Nature (Lond.) 1971; 234: 351–352
  • Barrett J. N., Magleby K. L., Pallotta B. S. Properties of single calcium‐activated potassium channels in cultured rat muscle. J. Physiol. 1982; 331: 211–230
  • Benham C. D., Bolton T. B., Lang R. J., Takewaki T. Calcium‐dependent K+ channels in dispersed intestinal and arterial smooth muscle cells of guinea pigs and rabbits studied by the patch‐clamp technique. J. Physiol. 1984; 350: 51P
  • Benham C. D., Bolton T. B., Lang R. J., Takewaki T. The mechanism of action of Ba2+ and TEA on single Ca2+ ‐activated K+ ‐ channels in arterial and intestinal smooth muscle cell membranes. Pfluegers Arch. 1985; 403: 120–127
  • Berger W., Grygorcyk R., Schwarz W. Single K+ channels in membrane evaginations of smooth muscle cells. Pfluegers Arch. 1984; 402: 18–23
  • Bergman C. Increase of sodium concentration near the inner surface of the nodal membrane. Pfluegers Arch. 1970; 317: 287–302
  • Bezanilla F., Armstrong C. M. Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons. J. Gen. Physiol. 1972; 60: 588–608
  • Bolton T. B., Tomita T., Vassort G. Voltage clamp and the measurement of ionic conductances in smooth muscle. Smooth Muscle: An Assessment of Current Knowledge, E. Bülbring, A. F. Brading, A. W. Jones, T. Tomita. University of Texas Press, Austin 1981; 47–63
  • Cecchi X., Wolff D., Alvarez O., Latorre R. Incorporation of Ca2+‐activated K+ channels from rabbit intestinal smooth muscle sar‐colemma into planar bilayers. Biophys. J. 1984; 45: 38a
  • Chamley‐Campbell J., Campbell G. R., Ross R. The smooth muscle cell in culture. Physiol. Rev. 1979; 59: 1–61
  • Colquhoun D., Neher E., Reuter H., Stevens C. F. Inward current channels activated by intracellular Ca in cultured cardiac cells. Nature (Lond.) 1981; 294: 752–754
  • Fay F. S., Cooke P. H., Canaday P. G. Contractile properties of isolated smooth muscle cells. Physiology of Smooth Muscle, E. Bulbring, M. F. Shuba. Raven Press, New York 1976; 249–264
  • Fay F. S., Singer J. J. Characteristics of response of isolated smooth muscle cells to cholinergic drugs. Am. J. Physiol. 1977; 232: C144–C154, (Cell Physiol. 1)
  • Fenwick E. M., Marty A., Neher E. Sodium and calcium channels in bovine chromaffin cells. J. Physiol. 1982; 331: 599–635
  • Fisher B. A., Bagby R. M. Reorientation of myofilaments during contraction of a vertebrate smooth muscle. Am. J. Physiol. 1977; 232: C5–C14, (Cell Physiol. 1)
  • Hamill O. P. Potassium and chloride channels in red blood cells. Single‐Channel Recording, B. Sakmann, E. Neher. Plenum Press, New York 1983; 451–471
  • Hamili O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch‐clamp techniques for high‐resolution current recording from cells and cell‐free membrane patches. Pfluegers Arch. 1981; 391: 85–100
  • Honeyman T., Merriam P., Fay F. S. The effects of iso‐proterenol on adenosine cyclic 3′, 5′‐monophosphate and contractility in isolated smooth muscle cells. Mol. Pharmacol. 1978; 14: 86–98
  • Johnson E. A., Lieberman M. Heart: excitation and contraction. Annu. Rev. Physiol. 1971; 33: 479–532
  • Lassen U. V., Pape L., Vestergaard‐Bogind B., Bengston O. Calcium‐related hyperpolarization of the amphiuma red cell membrane following micropuncture. J. Membr. Biol. 1974; 18: 125–144
  • Lassignal N. L., Singer J. J., Walsh J. V., Jr. Multiple neu‐ropeptides exert a direct effect on the same, isolated single smooth muscle cell. Am. J. Physiol. 1986, (in press)
  • Latorre R., Coronado R., Vergara C. K+ channels gated by voltage and ions. Annu. Rev. Physiol. 1984; 46: 485–495
  • Lux H. D., Neher E., Marty A. Single channel activity associated with the calcium dependent outward current in Helix pomatia. Pfluegers Arch. 1981; 389: 293–295
  • Marty A. Ca‐dependent Kchannels with large unitary conductance in chromaffin cell membranes. Nature (Lond.) 1981; 291: 497–500
  • Marty A. Blocking of large unitary calcium‐dependent potassium currents by internal sodium ions. Pfluegers Arch. 1983; 396: 179–181
  • Marty A. Ca++ ‐dependent K+ channels with large unitary conductance. Trends Neurosci. 1983; 6: 262–265
  • McCann J. D., Welsh M. J. Voltage‐gated Ca‐activated K channels in isolated canine airway smooth muscle cells. Biophys. J. 1985; 47: 135a
  • Meech R. W. Calcium‐dependent potassium activation in nervous tissues. Annu. Rev. Biophys. Bioeng. 1978; 7: 1–18
  • Methfessel C., Boheim G. The gating of single calcium‐dependent potassium channels is described by an activation/blockade mechanism. Biophys. Struct. Mech. 1982; 9: 35–60
  • Moczydlowski E., Latorre R. Gating kinetics of Ca2+ ‐activated K+ channels from rat muscle incorporated into planar lipid bilayers. J. Gen. Physiol. 1983; 82: 511–542
  • Pallotta B. S. Calcium‐activated potassium channels in rat muscle inactivate from a short‐duration open state. J. Physiol. 1985; 363: 501–516
  • Sakmann B., Neher E. Geometric parameters of pipettes and membrane patches. Single‐Channel Recording, B. Sakmann, E. Neher. Plenum Press, New York 1983; 37–51
  • Scheid C. R., Honeyman T. W., Fay F. S. Mechanism of β‐adrenergic relaxation of smooth muscle. Nature (Lond.) 1979; 277: 32–36
  • Sims S. M., Singer J. J., Walsh J. V., Jr. Cholinergic agonists suppress a potassium current in freshly dissociated smooth muscle cells of the toad. J. Physiol. 1985; 367: 503–529
  • Singer J. J., Walsh J. V., Jr. Passive properties of the membrane of single freshly isolated smooth muscle cells. Am. J. Physiol. 1980; 239: C153–C161, (Cell Physiol. 8)
  • Singer J. J., Walsh J. V., Jr. Rectifying properties of the membrane of single freshly isolated smooth muscle cells. Am. J. Physiol. 1980; 239: C175–C181, (Cell Physiol. 8)
  • Singer J. J., Walsh J. V., Jr. Single‐channel currents recorded in freshly dissociated vertebrate smooth muscle cells using the patch‐clamp technique. J. Gen. Physiol. 1982; 80: 23a–24a
  • Singer J. J., Walsh J. V., Jr. Large conductance Ca++ ‐activated K+ channels in smooth muscle cell membrane: reduction in unitary currents due to internal Na+ ions. Biophys. J. 1984; 45: 68–70
  • Walsh J. V., Jr., Singer J. J. Calcium action potentials in single freshly isolated smooth muscle cells. Am. J. Physiol. 1980; 239: C162–C174, (Cell Physiol. 8)
  • Walsh J. V., Jr., Singer J. J. Penetration‐induced hyper‐polarization as evidence for Ca2+ activation of K+ conductance in isolated smooth muscle cells. Am. J. Physiol. 1980; 239: C182–C189, (Cell Physiol. 8)
  • Walsh J. V., Jr., Singer J. J. Voltage clamp of single freshly dissociated smooth muscle cells: current‐voltage relationships for three currents. Pfluegers Arch. 1981; 390: 207–210
  • Walsh J. V., Jr., Singer J. J. Ca++ ‐activated K+ channels in vertebrate smooth muscle cells. Cell Calcium 1983; 4: 321–330
  • Warshaw D. M., Fay F. S. Cross‐bridge elasticity in single smooth muscle cells. J. Gen. Physiol. 1983; 82: 157–199
  • Wong B. S. Single calcium‐dependent potassium channels from amphibian stomach smooth muscle cells. Biophys. J. 1985; 47: 136a
  • Wong B. S., Lecar H., Adler M. Single calcium‐dependent potassium channels in clonal anterior pituitary cells. Biophys. J. 1982; 39: 313–317
  • Yellen G. Single Ca++ ‐activated nonselective cation channels in neuroblastoma. Nature (Lond.) 1982; 296: 357–359
  • Yellen G. Ionic Permeation and blockade in Ca2+ ‐activated K+ channels of bovine chromaffin cells. J. Gen. Physiol. 1984; 84: 157–186

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.