17
Views
8
CrossRef citations to date
0
Altmetric
Original Article

Blocking Mechanisms of Batrachotoxin-Activated Na Channels in Artificial Bilayers

&
Pages 111-147 | Published online: 09 Jul 2009

References

  • Albuquerque E. X., Brookes N., Onur R., Warnick J. E. Kinetics of interaction of batrachotoxin and tetrodotoxin on rat diaphragm muscle. Mol. Pharmacol. 1976; 12: 82–91
  • Agnew W. S. Voltage‐regulated sodium channel molecules. Annu. Rev. Physiol. 1984; 46: 517–530
  • Armstrong C. M. Potassium pores of nerve and muscle membranes. Membranes: A Series of Advances, G. Eisenman. Marcel Dekker, New York 1975; 325–358
  • Barchi R. L. Protein components of the purified sodium channel from rat skeletal muscle sarcolemma. J. Neurochem. 1983; 40: 1377–1385
  • Barchi R. L., Weigele J. B. Characteristics of saxitoxin binding to the sodium channel of sarcolemma isolated from rat skeletal muscle. J. Physiol. 1979; 295: 383–396
  • Cahalan M. D., Almers W. Interactions between quaternary lidocaine, the sodium channel gates, and tetrodotoxin. Biophys. J. 1979; 27: 39–56
  • Campbell D. T., Hille B. Kinetic and pharmacological properties of the sodium channel of frog skeletal muscle. J. Gen. Physiol. 1976; 67: 309–323
  • Caras R. Venomous Animals of the World. Prentice‐Hall, Englewood Cliffs, N.J. 1974
  • Catterall W. A. Neurotoxins that act on voltage‐sensitive sodium channels in exictable membranes. Annu. Rev. Pharmacol. Toxicol. 1980; 20: 15–43
  • Catterall W. A. The molecular basis of neuronal excitability. Science 1984; 223: 653–661
  • Catterall W. A., Morrow C. S., Daly J. W., Brown G. B. Binding of batrachotoxinin A20 α‐benzoate to a receptor site associated with sodium channels in synaptic nerve ending particles. J. Biol. Chem. 1981; 256: 8922–8927
  • Coronado R., Miller C. Voltage‐dependent caesium blockade of a cation channel from fragmented sarcoplasmic reticulum. Nature (Lond.) 1979; 280: 807–810
  • Coronado R., Miller C. Decamethonium and hexamethonium block K+ channels of sarcoplasmic reticulum. Nature (Lond.) 1980; 288: 495–497
  • Creveling C. R., McNeal E. T., Daly J. W., Brown G. B. Batrachotoxin‐induced depolarization and [3H] bactrachotoxinin A20‐α‐benzoate binding in a vesicular preparation from guinea pig cerebral cortex: inhibition by local anesthetics. Mol. Pharmmcol. 1983; 23: 350–358
  • Cruz L. J., Gray W. R., Olivera B. M., Zeikus R. D., Kerr L., Yoshikami D., Moczydlowski E. Conus geographus toxins that discriminate between neuronal and muscle sodium channels. J Biol. Chem. 1985; 260: 9280–9288
  • Dubois J. M., Schneider M. F., Khodorov B. I. Voltage‐dependence of intramembrane charge movement and conductance activation of batrachotoxin‐modified sodium channels in frog node of Ranvier. J. Gen. Physiol. 1983; 81: 829–844
  • Frelin C., Vigne P., Lazdunski M. Na+ channels with high and low affinity tetrodotoxin binding sites in the mammalian skeletal muscle cell. J. Biol. Chem. 1983; 258: 7256–7259
  • French R. J., Shoukimas J. J. An ion's view of the potassium channel: the structure of the permeation pathway as sensed by a variety of blocking ions. J. Gen. Physiol. 1985; 85: 669–698
  • French R. J., Worley J. F., Krueger B. K. Voltage‐dependent block by saxitoxin of sodium channels incorporated in planar lipid bilayers. Biophys. J. 1984; 45: 301–312
  • Hartshorne R. P., Keller B. U., Talvenheimo J. A., Catterall W. A., Montal M. Functional reconstitution of the purified brain sodium channel in planar lipid bilayers. Proc. Natl. Acad. Sci. (USA) 1985; 82: 240–244
  • Henderson R., Ritchie J. M., Strichartz G. R. Evidence that tetrodotoxin and saxitoxin act at a metal cation binding site in the sodium channel of nerve membrane. Proc. Natl. Acad. Sci. (USA) 1974; 71: 3936–3940
  • Hille B. The receptor for tetrodotoxin and saxiioxin: a structural hypothesis. Biophys. J. 1975; 15: 615–619
  • Hille B. The pH‐dependent rate of action of local anesthetics on the node of Ranvier. J. Gen. Physiol. 1977; 69: 475–496
  • Hille B. Local anesthetics: hydrophilic and hydrophobic pathways for the drug‐receptor reaction. J. Gen. Physiol. 1977; 69: 497–515
  • Hille B. Ionic Channels of Excitable Membranes. Sinauer Associates, Sunderland, Mass 1984
  • Horn R., Patlak J., Stevens C. F. The effect of tetramethylam‐monium on single sodium channel currents. Biophys. J. 1981; 36: 321–327
  • Huang L. M., Catterall W. A., Ehrenstein G. Comparison of ionic selectivity of batrachotoxin‐activated sodium channels with different tetrodotoxin dissociation constants. J. Gen. Physiol. 1979; 73: 839–854
  • Huang L. M., Ehrenstein G. Local anesthetics QX‐572 and benzocaine act at separate sites on the batrachotoxin‐activated sodium channel. J. Gen. Physiol. 1981; 77: 137–153
  • Huang L. M., Moran N., Ehrenstein G. Batrachotoxin modifies the gating kinetics of sodium channels in internally perfused neu‐roblastoma cells. Proc. Natl. Acad. Sci. (USA) 1982; 79: 2082–2085
  • Kao C. Y., Nishiyama A. Action of saxitoxin on peripheral neuromuscular systems. J. Physiol. 1965; 180: 50–66
  • Kao C. Y., Walker S. E. Active groups of saxitoxin and tetrodotoxin as deduced from actions of saxitoxin analogues on frog muscle and squid axon. J. Physiol. 1982; 323: 619–637
  • Khodorov B. I., Peganov E. M., Revenko S. V., Shishkova L. D. Sodium currents in voltage clamped nerve fiber of frog under the combined action of batrachotoxin and procaine. Brain Res. 1975; 84: 541–546
  • Krueger B. K., Worley J. F., French R. J. Single sodium channels from rat brain incorporated into planar lipid bilayer membranes. Nature (Lond.) 1983; 303: 172–175
  • Miller C. Bis‐quaternary ammonium blockers as structural probes of the sarcoplasmic reticulum K+ channel. J. Gen. Physiol. 1982; 79: 869–891
  • Miller C., Moczydlowski E., Latorre R., Phillips M. Charyb‐dotoxin, a protein inhibitor of single Ca2+ ‐activated K+ channels from mammalian skeletal muscle. Nature (Lond.) 1985; 313: 316–318
  • Moczydlowski E., Garber S. S., Miller C. Batrachotoxin‐activated Na+ channels in planar lipid bilayers: competition of tetrodotoxin block by Na+. J. Gen. Physiol. 1984; 84: 665–686
  • Moczydlowski E., Hall S., Garber S. S., Strichartz G. S., Miller C. Voltage‐dependent blockade of muscle Na+ channels by guanidinium toxins: effect of toxin charge. J. Gen, Physiol. 1984; 84: 687–704
  • Myers C. W., Daly J. W. Dart‐poison frogs. Sci. Am. 1983; 248: 120–133
  • Narahashi T., Moore J. W., Scott W. R. Tetrodotoxin blockage of sodium conductance increase in lobster giant axons. J. Gen. Physiol. 1964; 47: 965–974
  • Neher E., Steinbach J. H. Local anaesthetics transiently block currents through single acetylcholine receptor channels. J. Physiol. 1978; 277: 153–176
  • Noda M., Shimizu S., Tanabe T., Takai T., Kayano T., Ikeda T., Takahashi H., Nakayama H., Kanaoka Y., Minamino N., Kangawa K., Matsuo H., Raftery M. A., Hirose T., Inayama S., Hayashida H., Miyata T., Numa S. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature (Lond.) 1984; 312: 121–127
  • Pappone P. A. Voltage‐clamp experiments in normal and dener‐vated mammalian skeletal muscle fibers. J. Physiol. 1980; 306: 377–410
  • Postma S. W., Catterall W. A. Inhibition of binding of [3H] batrachotoxin in A20‐α‐benzoate to sodium channels by local anesthetics. Mol. Pharmacol. 1984; 25: 219–227
  • Reed J. K., Raftery M. A. Properties of the tetrodotoxin binding component in plasma membranes isolated from Electrophorus electricus. Biochemistry 1976; 15: 944–953
  • Ritchie J. M., Rogart R. B. The binding of saxitoxin and tetrodotoxin to excitable tissue. Rev. Physiol. Biochem. Pharmacol. 1977; 79: 1–50
  • Rogart R. B., Regan L. J., Dziekan L. C., Galper J. B. Identification of two sodium channel subtypes in chick heart and brain. Proc. Natl. Acad. Sci. (USA) 1983; 80: 1106–1110
  • Sato S., Nakamura H., Ohizumi Y., Kobayashi J., Hirata Y. The amino acid sequences of homologous hydroxyproline‐containing myotoxins from the marine snail Conus geographus venom. FEBS Lett. 1983; 155: 277–280
  • Sigworth F. J., Neher E. Single Na+ channel currents observed in cultured rat muscle cells. Nature (Lond.) 1980; 287: 447–449
  • Sine S. M., Steinbach J. H. Agonists block currents through acetylcholine receptor channels. Biophys. J. 1984; 46: 277–284
  • Strichartz G. R. The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine. J. Gen. Physiol. 1973; 62: 37–57
  • Strichartz G. Molecular mechanisms of nerve block by local anesthetics. Anesthesiology 1976; 45: 421–441
  • Strichartz G. R., Ritchie J. M. The action of local anesthetics on ion channels of excitable tissues. Handbook of Experimental Pharmacology: Local Anesthetics, G. R. Strichartz, 1986, in press
  • Vergara C., Latorre R. Kinetics of Ca2+‐activated K+ channels from rabbit muscle incolpdrated into planar bilayers: evidence for a Ca2+ and Ba2+ blockade. J. Gen. Physiol. 1983; 82: 543–568
  • Vergara C., Moczydlowski E., Latorre R. Conduction, blockade and gating in a Ca2+‐activated K+ channel incorporated into planar lipid bilayers. Biophys. J. 1984; 45: 73–76
  • Weigele J. B., Barchi R. L. Saxitoxin binding to the mammalian sodium channel: competition by monovalent and divalent cations. FEBS Lett. 1978; 95: 49–53
  • Woodhull A. Ionic blockage of sodium channels in nerve. J. Gen. Physiol. 1973; 61: 687–708
  • Yamamoto D., Yeh J. Z. Kinetics of 9‐aminoacridine block of single Na channels. J. Gen. Physiol. 1984; 84: 361–377
  • Yellen G. Ionic permeation and blockade in Ca2+‐activated K+ channels of bovine chromaffin cells. J. Gen. Physiol. 1984; 84: 157–186
  • Yellen G. Relief of Na+ block of Ca2+ ‐activated K+ channels by external cations. J. Gen. Physiol. 1984; 84: 187–199

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.