5
Views
5
CrossRef citations to date
0
Altmetric
Original Article

Charge Changes in Sarcoplasmic Reticulum and Ca2+ -ATPase Induced by Calcium Binding and Release: A Study Using Lipophilic Ions

, &
Pages 291-307 | Published online: 09 Jul 2009

References

  • Åkerman K. E. O., Wolff C. H. J. Charge transfer during Ca2+ uptake by rabbit skeletal muscle sarcoplasmic reticulum as measured with oxanol VI. FEBS Lett. 1979; 100: 291–295
  • Arrio B., Johannis G., Garette Y. C., Brethes D. Electrokinetic and hydrodynamic properties of sarcoplasmic reticulum vesicles: a study by laser Doppler electrophoresis and quasi‐elastic light scattering. Arch. Biochem. Biophys. 1984; 228: 220–224
  • Beeler T., Russel J. T., Martonosi A. Optical probes responses on sarcoplasmic reticulum. Oxacarbocyanines as probes of membrane potential. Eur. J. Biochem. 1979; 95: 579–591
  • Beeler T., Keffer. The rate of Ca2+ translocation by sarcoplasmic reticulum (Ca2+ + Mg2+)‐ATPase measured with intravesicular arsenazo III. Biochim. Biophys. Acta 1984; 773: 99–105
  • Best P. M. Cardiac muscle function: results from skinned fiber preparation. Am. J. Physiol. 1983; 244: H167–H177
  • Campbell K. P., Shamoo A. E. Chloride‐induced release of actively loaded calcium from light and heavy sarcoplasmic reticulum vesicles. J. Membr. Biol. 1980; 54: 73–80
  • Carvalho A. P. Calcium binding properties of sarcoplasmic reticulum as influenced by ATP, caffeine and local anesthetics. J. Gen. Physiol. 1968; 52: 622–642
  • Carvalho C. A. M., Carvalho A. P. Fluorimetric monitoring of calcium binding to sarcoplasmic reticulum. Biochim. Biophys. Acta 1977; 468: 21–30
  • Chiu V. C. K., Haynes D. H. High and low affinity Ca2+ binding to the sarcoplasmic reticulum. Use of a high‐affinity fluorescent calcium indicator. Biophys. J. 1977; 18: 3–22
  • Chiu V. C. K., Mouring D., Watson B. D., Haynes D. H. Measurement of surface charge densities of sarcoplasmic reticulum membranes. J. Membr. Biol. 1980; 56: 121–132
  • Fabiato A. Calcium‐induced release of calcium from the cardiac sarcoplasmic reticulum. Am. J. Physiol. 1983; 245: C1–C14
  • Huxley A. F., Taylor F. E. Local activation of striated muscle fibers. J. Physiol. 1958; 144: 246–441
  • Ikemoto N. The calcium binding sites involved in the regulation of the purified adenosine triphosphatase of the sarcoplasmic reticulum. J. Biol. Chem. 1974; 249: 649–651
  • Ikemoto N. Structure and function of the calcium pump protein of sarcoplasmic reticulum. Annu. Rev. Physiol. 1982; 44: 297–317
  • Inesi G., Lewis D., Murphy A. J. Interdependence of H+ Ca2+ and Pi or vanadate sites in sarcoplasmic reticulum ATPase. J. Biol. Chem. 1984; 259: 996–1003
  • Kamo N., Maratsuga M., Hogoh R., Kobatake Y. Membrane potential of mitochondria measured with an electrode sensitive to tetraphenylphosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J. Membr. Biol. 1979; 49: 105–121
  • Kometani T., Kasai M. Ionic permeability of sarcoplasmic reticulum vesicles measured by light scattering method. J. Membr. Biol. 1978; 41: 295–308
  • Levitsky D. O., Aliev M. K., Kuzmin A. V., Levchenko T. S., Smirnov V. N., Chazov E. I. Isolation of calcium pump system and purification of Ca2+‐dependent ATPase from heart muscle. Biochim. Biophys. Acta 1976; 443: 262–284
  • Levitsky D. O., Benevolensky D. S., Levchenko T. S., Kuzmin A. V. The cardiac relaxing system. Adv. Myocardiol. 1982; 3: 393–405
  • Levitsky D. O., Loginov V. A., Lebedev A. V., Levchenko T. S., Leytin V. L. Ca2+‐binding and charge movements in membranes of platelets and sarcoplasmic reticulum. FEBS Lett. 1984; 171: 89–93
  • Liberman E. A., Topali V. P. Selective transport of ions through bimolecular phospholipid membranes. Biochim. Biophys. Acta 1968; 163: 125–130
  • Liberman E. A., Tsofina L. M. Uptake of “penetrating” anions by hydrophobic parts of macromolecules. Mol. Biol. (USSR) 1972; 6: 372–376
  • MacLennan D. H. Purification and properties of an adenosine triphosphatase from sarcoplasmic reticulum. J. Biol. Chem. 1970; 245: 4508–4518
  • MacLennan D. H., Oswald T. J., Stewart P. S. Structural components of sarcoplasmic reticulum. Ann. N. Y. Acad. Sci. 1974; 227: 527–536
  • MacLennan D. H., Brandl C. J., Korczak B., Green N. M. Amino‐acid sequence of a Ca2+ + Mg2+‐dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature (London) 1985; 316: 696–700
  • Madeira V. M. C. Proton gradient formation during transport of Ca2+ by sarcoplasmic reticulum. Arch. Biochem. Biophys. 1978; 185: 316–325
  • Madeira V. M. C. State of translocated Ca2+ by sarcoplasmic reticulum inferred from kinetic analysis of calcium oxalate precipitation. Biochim. Biophys. Acta 1984; 769: 284–290
  • Martonosi A. Mechanisms of Ca2+ release from sarcoplasmic reticulum of skeletal muscle. Physiol. Rev. 1984; 64: 1240–1320
  • Meissner G., Conner G. E., Fleischer S. Isolation of sarcoplasmic reticulum by zonal centrifugation and purification of Ca2+ binding proteins. Biochim. Biophys. Acta 1973; 298: 246–269
  • Meissner G., McKinley D. Permeability of sarcoplasmic reticulum membranes. The effect of changed ionic environment on Ca2+ release. J. Membr. Biol. 1976; 30: 79–98
  • Meissner G. Calcium transport and monovalent cation and proton fluxes in sarcoplasmic reticulum vesicles. J. Biol. Chem. 1981; 256: 636–643
  • Nakamaru Y., Schwartz A. Possible control of intracellular calcium metabolism by H+: sarcoplasmic reticulum of skeletal and cardiac muscle. Biochem. Biophys. Res. Commun. 1970; 41: 830–836
  • Pechatnikov V. A., Rizvanov F. F., Pletnev V. V. The effect of potential‐sensitive fluorescent dye on sarcoplasmic reticulum membrane permeability. Stud. Biophys. 1983; 93: 95–100
  • Ritchie R. J. A critical assessment of the use of lipophilic cations as membrane potential probes. Prog. Biophys. Mol. Biol. 1984; 43: 1–32
  • Russel J. T., Beeler T., Martonosi A. Optical probes responses on sarcoplasmic reticulum. Merocyanine and oxonol dyes. J. Biol. Chem. 1979; 254: 2047–2052
  • Shoshan V., MacLennan D. H., Wood D. S. A proton controls a calcium release channel in sarcoplasmic reticulum. Proc. Natl. Acad. Sci. USA 1981; 78: 4828–4832
  • Shoshan V., MacLennan D. H. Tetraphenylboron causes Ca2+ release in isolated sarcoplasmic reticulum and in skinned muscle fiber. J. Biol. Chem. 1983; 258: 2837–2842
  • Skulachev V. P. Electric fields in coupling membranes. FEBS Lett. 1970; 11: 301–305
  • Tien H. T. Bilayer Lipid Membranes—Theory and practice. Marcel Dekker, New York 1974
  • Ueno T., Sekine T. A role of H+ fluxes in active Ca2+ transport into sarcoplasmic reticulum vesicles. I. Effect of an artificially imposed H+ gradients on Ca2+ uptake. J. Biochem. (Tokyo) 1981; 89: 1239–1246

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.