21
Views
23
CrossRef citations to date
0
Altmetric
Review Article

Review: Regulation of Cardiac Sarcoplasmic Reticulum Function by Phospholamban

&
Pages 175-192 | Published online: 09 Jul 2009

References

  • Berman M. C., Aderem A. A. A calcium stat method for measurement of calcium transport in isolated sarcoplasmic reticulum vesicles. Anal. Biochem. 1981; 115: 297–301
  • Bidlack J. M., Ambudkar I. S., Shamoo A. E. Purification of phospholamban, a 22,000-dalton protein from cardiac sarcoplasmic reticulum that is specifically phosphorylated by cyclic AMP-dependent protein kinase. J. Biol. Chem. 1982; 257: 4501–4506
  • Bilezikjian L. M., Kranias E. G., Potter J. D., Schwartz A. Studies on phosphorylation of canine cardiac sarcoplasmic reticulum by calmodulin-dependent protein kinase. Circ. Res. 1981; 49: 1356–1361
  • Brandl C. J., Green N. M., Korczak B., MacLennan D. H. Two ATPase genes: Homologies and mechanistic implications of deduced amino acid sequences. Cell 1986; 44: 597–607
  • Brandl C. J., Deleon S., Martin D. R., MacLennan D. H. Adult forms of the Ca2+ ATPase of sarcoplasmic reticulum. Expression in developing skeletal muscle. J. Biol. Chem. 1987; 262: 3768–3774
  • Brum G, Osterreider W., Trautwein W. β-Adrenergic increase in the calcium conductance of cardiac myocytes studied with the patch clamp. Pflugers Arch. 1984; 401: 111–118
  • Carafoli E. M., Niggli V., Malmstrom K., Caroni P. Calmodulin in natural and reconstituted calcium transporting systems. Ann. N.Y. Acad. Sci. 1980; 356: 258–266
  • Chamberlain B. K., Levitsky D. O., Fleischer S. Isolation and characterization of canine cardiac sarcoplasmic reticulum with improved Ca2+ transport properties. J. Biol. Chem. 1983; 258: 6602–6609
  • Collins J. H., Kranias E. G., Reeves A. S., Bilezikjian L. M., Schwartz A. Isolation of phospholamban and a second proteolipid component from canine cardiac sarcoplasmic reticulum. Biochem. Biophys. Res. Commun. 1981; 99: 796–803
  • Davis B. A., Schwartz A., Samaha F. J., Kranias E. G. Regulation of cardiac sarcoplasmic reticulum calcium transport by calcium-calmodulin-dependent phosphorylation. J. Biol. Chem. 1983; 258: 13, 587–13; 591
  • Deadman J. R., Jackson R. L., Schreiber W. E., Means A. R. Sequence homology of the Ca2+-dependent regulator of cyclic nucleotide phosphodiesterase from rat testis with other Ca2+-binding proteins. J. Biol. Chem. 1978; 253: 343–346
  • Ferguson D. G., Young E. F., Kranias E. G. Immunogold localization of phospholamban-like polypeptide in canine vascular and visceral smooth muscle homogenates. Biophys. J. 1987; 51: 350a
  • Fujii J, Ueno A., Kitano K., Tanaka S., Kadoma M., Tada M. Complete complementery DNA-derived amino acid sequence of canine cardiac phospholamban. J. Clin. Invest 1987; 79: 301–304
  • Gupta R. C., Davis B. A., Kranias E. G. Mechanism of the stimulation of cardiac sarcoplasmic reticulum calcium pump by calmodulin. Membrane Biochem. 1988; 7: 73–86
  • Harigaya S, Schwartz A. Rate of calcium binding and uptake in normal animal and failing human cardiac muscle. Circ. Res. 1969; 25: 781–794
  • Hasselbach W, Oetliker H. Energetics and electrogenicity of the sarcoplasmic reticulum calcium pump. Annu. Rev. Physiol. 1983; 45: 325–339
  • Hicks M. J., Shigekawa M., Katz A. M. Mechanism by which cyclic adenosine 3′:5′-monophosphate-dependent protein kinase stimulates calcium transport in cardiac sarcoplasmic reticulum. Circ. Res. 1979; 44: 384–391
  • Inui M, Kadoma M., Tada M. Purification and characterization of phospholamban from canine cardiac sarcoplasmic reticulum. J. Biol. Chem. 1985; 260: 3708–3715
  • Inui M, Chamberlain B. K., Saito A., Fleischer S. The nature of the modulation of Ca2+ transport as studied by reconstitution of cardiac sarcoplasmic reticulum. J. Biol. Chem. 1986; 261: 1794–1800
  • Jakab G, Kranias E. G. Phosphorylation and dephosphorylation of purified phospholamban and associated phosphatidylinositides. Biochemistry 1988; 27: 3799–3806
  • Jones L. R., Besh H. R., Jr., Fleming J. W., McConnaughy M. M., Watanabe A. M. Separation of vesicles of cardiac sarcoplasmic reticulum. J. Biol. Chem. 1979; 254: 530–539
  • Jones L. R., Cala S. R. Biochemical evidence for functional heterogeneity of cardiac sarcoplasmic reticulum vesicles. J. Biol. Chem. 1981; 256: 11, 809–11; 818
  • Jones L. R., Simmerman H. K.B., Wilson W. W., Gurd F. R.N., Wegener A. D. Purification and characterization of phospholamban from canine cardiac sarcoplasmic reticulum. J. Biol. Chem. 1985; 260: 7721–7730
  • Katz A. M., Tada M., Kirchberger M. A. Control of calcium transport on the myocardium by cAMP-protein kinase system. Advances in Cyclic Nucleotide Research, G. I. Drummond. Raven Press, New York 1975; 5: 453–472
  • Katz A. M. Role of the contractile proteins and sarcoplasmic reticulum in the response of the heart to catecholamines: An historical review. Advances in Cyclic Nucleotide Research, P. Greengard, G. A. Robison. Raven Press, New York. 1979; 11: 303–343
  • Katz S, Remtulla M. A. Phosphodiesterase protein activator stimulates calcium transport in cardiac microsomal preparations enriched in sarcoplasmic reticulum. Biochem. Biophys. Res. Commun. 1978; 83: 1373–1379
  • Kim H. W., Kim D. H., Ikemoto N., Kranias E. G. Lack of effects of calcium-calmodulin-dependent phosphorylation on Ca2+ release from cardiac sarcoplasmic reticulum. Biochim. Biophys. Acta 1987; 903: 333–340
  • Kirchberger M. A., Tada M., Repke D. L., Katz A. Cyclic adenosine 3′,5′-monophosphate dependent protein kinase stimulation of the calcium uptake by canine cardiac microsomes. J. Mol. Cell. Cardiol. 1972; 4: 673–680
  • Kirchberger M. A., Tada M., Katz A. Adenosine 3′:5′-monophosphate dependent protein kinase catalyzed phosphorylation reaction and its relationship to calcium transport in cardiac sarcoplasmic reticulum. J. Biol. Chem. 1974; 249: 6166–6173
  • Kirchberger M. A., Raffo A. Decrease in calcium transport associated with phosphoprotein phosphatase-catalyzed dephosphorylation of cardiac sarcoplasmic reticulum. J. Cyclic Nucl. Res. 1977; 3: 45–53
  • Kirchberger M. A., Wong D. Calcium efflux from isolated cardiac sarcoplasmic reticulum. J. Biol. Chem. 1978; 253: 6941–6945
  • Kirchberger M. A., Antonetz T. Calmodulin-mediated regulation of calcium transport and (Ca2+ + Mg2+)activated ATPase activity of isolated cardiac sarcoplasmic reticulum. J. Biol. Chem. 1982; 257: 15, 685–15; 691
  • Kranias E. G., Bilezikjian L. M., Potter J. D., Piascik M. T., Schwartz A. Role of calmodulin in regulation of cardiac sarcoplasmic reticulum phosphorylation. Ann. N.Y. Acad. Sci. 1980; 356: 279–291
  • Kranias E. G., Mandel F., Wang T., Schwartz A. Mechanism of the stimulation of calcium ion dependent adenosine triphosphatase of cardiac sarcoplasmic reticulum by adenosine 3′:5′-monophosphate dependent protein kinase. Biochemistry 1980; 19: 5434–5439
  • Kranias E. G., Schwartz A., Jungman R. A. Characterization of cyclic 3′:5′-AMP-dependent protein kinase in sarcoplasmic reticulum and cytosol of canine myocardium. Biochim. Biophys. Acta 1982; 709: 28–37
  • Kranias E. G., Solaro R. J. Phosphorylation of troponin I and phospholamban during catecholamine stimulation of rabbit heart. Nature 1982; 298: 182–184
  • Kranias E. G., Solaro R. J. Coordination of cardiac sarcoplasmic reticulum and myofibrillar function by protein phosphorylation. Fed. Proc. 1983; 42: 33–38
  • Kranias E. G. Regulation of Ca2+ transport by cyclic 3′:5′-AMP-dependent and calcium-calmodulin-dependent phosphorylation of cardiac sarcoplasmic reticulum. Biochim. Biophys. Acta 1985; 844: 193–199
  • Kranias E. G. Regulation of calcium transport by protein phosphatase activity associated with cardiac sarcoplasmic reticulum. J. Biol. Chem. 1985; 260: 11, 006–11; 010
  • Kranias E. G., Garvey J. L., Srivastava R. D., Solaro R. J. Phosphorylation and functional modifications of sarcoplasmic reticulum and myofibrils in isolated rabbit hearts stimulated with isoprenaline. Biochem. J. 1985; 226: 113–121
  • Kranias E. G., DiSalvo J. A phospholamban protein phosphatase activity associated with cardiac sarcoplasmic reticulum. J. Biol. Chem. 1986; 261: 10, 029–10; 032
  • Kuo J. F., Anderson R. G.G., Wise R. C., Mackerlova K., Salomonsson I., Brackett N. L., Katoh N., Shoji M., Wrenn R. W. Calcium-dependent protein kinase: Widespread occurence in various tissues and phyla of the animal kingdom and comparison of the effects of phospholipid, calmodulin and trifluoperazine. Proc. Natl. Acad. Sci. USA 1980; 77: 7039–7043
  • LaRaia P. J., Morkin E. Adenosine 3′,5′-monophosphate dependent membrane phosphorylation, a possible mechanism for the control of microsomal calcium transport in heart muscle. Circ. Res. 1974; 35: 298–306
  • LePeuch C. J., Haiech J., Demaille J. G. Concerted regulation of cardiac sarcoplasmic reticulum calcium transport by cyclic adenosine monophosphate dependent and calcium-calmodulin-dependent phosphorylations. Biochemistry 1979; 18: 5150–5157
  • LePeuch C. J., LePeuch D. A.M., Demaille J. G. Phospholamban, activator of the cardiac sarcoplasmic reticulum pump. Physical properties and diagonal purification. Biochemistry 1980; 19: 3368–3373
  • LePeuch C. J., Guilleux J. C., Demaille J. G. Phospholamban phosphorylation in the perfused rat heart is not solely dependent on β-adrenergic stimulation. FEBS Lett. 1980; 114: 165–168
  • Levitsky D. O., Aliev M. K., Kuzmin A. V., Leuchenko T. S., Smirnov V. N., Chazov E. I. Isolation of calcium pump system and purification of calcium ion-dependent ATPase from heart muscle. Biochim. Biophys. Acta 1976; 443: 468–484
  • Levitsky D. O., Benevolensky D. S., Levichenko T. S., Smirnov V. N., Chazov E. I. Calcium binding rate and capacity of cardiac sarcoplasmic reticulum. J. Mol. Cell. Cardiol. 1981; 13: 785–796
  • Lighty G. W., Bertrand H. A. Cardiac sarcoplasmic reticulum isolation from slaughterhouse beef heart. Anal. Biochem. 1979; 99: 41–52
  • Limas C. J. Phosphorylation of cardiac sarcoplasmic reticulum by a calcium-activated, phospholipid-dependent protein kinase. Biochem. Biophys. Res. Commun. 1980; 96: 1378–1383
  • Lindemann J. P., Jones L. R., Hathaway D. R., Henry B. G., Watanabe A. M. β-Adrenergic stimulation of phospholamban phosphorylation and Ca2+-ATPase activity in guinea pig ventricles. J. Biol. Chem. 1983; 258: 464–471
  • Lindemann J. P., Watanabe A. M. Phosphorylation of phospholamban in intact myocardium. Role of Ca2+-calmodulin dependent mechanisms. J. Biol. Chem. 1985; 260: 4516–4525
  • Lindemann J. P., Watanabe A. M. Muscarinic cholinergic inhibition of β-adrenergic stimulation of phospholamban phosphorylation and Ca2+ transport in guinea pig ventricles. J. Biol. Chem. 1985; 260: 13, 122–13; 129
  • Lindemann J. P., Jones L. R. Sequential phospholamban (PLB) phosphorylation in intact hearts. Biophys. J. 1987; 51: 402a
  • Lopaschuk G, Richter B., Katz S. Characterization of calmodulin effects on calcium transport in cardiac microsomes enriched in sarcoplasmic reticulum. Biochemistry 1980; 19: 5603–5607
  • MacLennan D. H., Brandl C. J., Korczak B., Green N. M. Amino-acid sequence of a Ca2+ + Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature 1985; 316: 696–700
  • Martonosi A, Feretos R. Sarcoplasmic reticulum III. Correlation between adenosine triphosphatase activity and Ca2+ uptake. J. Biol. Chem. 1964; 239: 659–668
  • Miyakoda G, Yoshida A., Takisawa H., Nakamura T. β-Adrenergic regulation of contractility and protein phosphorylation in spontaneously beating isolated rat myocardial cells. J. Biochem. 1987; 102: 211–224
  • Movsesian M. A., Nishikawa M., Adelstein R. S. Phosphorylation of phospholamban by calcium-activated, phospholipid-dependent protein kinase. J. Biol. Chem. 1984; 259: 8029–8032
  • Osterreider W, Brum G., Heschler J., Trautwein W., Flockerzi V., Hofman F. Injection of subunits of cyclic AMP-dependent protein kinase into cardiac myocytes modulates Ca2+ current. Nature 1982; 298: 576–578
  • Plank B, Wyskovsky W., Hellmann G., Suko J. Calmodulin-dependent elevation of calcium transport associated with calmodulin-dependent phosphorylation in cardiac sarcoplasmic reticulum. Biochim. Biophys. Acta 1983; 732: 99–109
  • Plank B, Pifl C., Hellmann G., Wyskovsky W., Hoffman R., Suko J. Correlation between calmodulin-dependent increase in the rate of calcium transport and calmodulin-dependent phosphorylation of cardiac sarcoplasmic reticulum. Eur. J. Biochem. 1983; 136: 215–221
  • Rapundalo S. T., Solaro R. J., Kranias E. G. circ. Res., (In Press).
  • Schwartz A, Entman M. L., Kanike K., Lane L. K., Van Winkle W. B., Bornet E. P. The rate of calcium uptake into sarcoplasmic reticulum of cardiac muscle and skeletal muscle. Effects of cyclic AMP-dependent protein kinase and phosphorylase b kinase. Biochim. Biophys. Acta 1976; 426: 57–72
  • Seiler S, Wegener A. D., Whang D. D., Hathaway D. R., Jones L. R. High molecular weight proteins in cardiac and skeletal junctional sarcoplasmic reticulum vesicles bind calmodulin, are phosphorylated, and are degraded by Ca2+-activated protease. J. Biol. Chem. 1984; 259: 8550–8557
  • Shamoo A. E., Ambudkar I. S. Regulation of calcium transport in cardiac cells. Can. J. Physiol. Pharmacol. 1983; 62: 9–22
  • Shigekawa M, Finegan J. A.M., Katz A. M. Calcium transport ATPase of canine-cardiac sarcoplasmic reticulum: a comparison with that of rabbit fast skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 1976; 251: 6894–6900
  • Simmerman H. K.B., Collins J. H., Theibert J. L., Wegener A. D., Jones L. R. Sequence analysis of phospholamban. Identification of phosphorylation sites and two major structural domains. J. Biol. Chem. 1986; 261: 13, 333–13; 341
  • Louis P.J. St., Sulakhe P. V. Phosphorylation of cardiac sarcolemma by endogenous and exogenous protein kinases. Arch. Biochem. Biophys. 1979; 198: 227–240
  • Suko J, Hasselbach W. Characterization of cardiac sarcoplasmic reticulum ATP-ADP phosphate exchange and phosphorylation of the calcium transport adenosine triphosphatase. Eur. J. Biochem. 1976; 64: 123–130
  • Sumida M, Wang T., Mandel F., Froehlich J. P., Schwartz A. Transient state kinetics of Ca2+-transport of sarcoplasmic reticulum. J. Biol. Chem. 1978; 253: 8772–8777
  • Suzuki T, Wang J. H. Stimulation of bovine cardiac sarcoplasmic reticulum Ca2+ pump and blocking of phospholamban phosphorylation and dephosphorylation by a phospholamban monoclonal antibody. J. Biol. Chem. 1986; 261: 7018–7023
  • Suzuki T, Lui P., Wang J. H. The use of monoclonal antibodies for the species and tissue distribution of phospholamban. Cell Calcium 1986; 7: 41–47
  • Suzuki T, Lui P., Wang J. H. Rapid purification of phospholamban by monoclonal antibody immunoaffinity chromatography. Biochem. Cell. Biol. 1987; 65: 302–309
  • Tada M, Kirchberger M. A., Repke D. I., Katz A. M. The stimulation of calcium transport in cardiac sarcoplasmic reticulum by adenosine 3′,5′-monophosphate-dependent protein kinase. J. Biol. Chem. 1974; 249: 6194–6180
  • Tada M, Kirchberger M. A., Katz A. M. Phosphorylation of a 22,000-dalton component of the sarcoplasmic reticulum by adenosine 3′,5′-monophosphate-dependent protein kinase. J. Biol. Chem. 1975; 250: 2640–2647
  • Tada M, Yamamoto T., Tonomura Y. Molecular mechanism of active calcium transport by sarcoplasmic reticulum. Physiol. Rev. 1978; 58: 1–79
  • Tada M, Yamada M., Ohmori F., Kuzuya T., Inui M., Abe H. Transient state kinetic studies of Ca2+-dependent ATPase and calcium transport by sarcoplasmic reticulum. J. Biol. Chem. 1980; 255: 1985–1992
  • Tada M, Yamada M., Kadoma M., Inui M., Ohmori F. Calcium transport by cardiac sarcoplasmic reticulum and phosphorylation of phospholamban. Mol. Cell Biochem. 1982; 46: 73–95
  • Tada M, Inui M., Yamada M., Kodoma M., Kuzuya T., Abe H., Kakiuchi S. Effects of phospholamban phosphorylation catalyzed by adenosine 3′:5′ monophosphate and calmodulin dependent protein kinases on calcium transport ATPase of cardiac sarcoplasmic reticulum. J. Mol. Cell. Cardiol. 1983; 15: 335–346
  • Takai Y, Kishimoto A., Iwasa Y., Kawahara Y., Mori T., Nishizuka Y. Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids. J. Biol. Chem. 1979; 254: 3692–3695
  • Watterson D. M., Sharief F., Vanaman T. C. The complete amino acid sequence of the Ca2+-dependent modulator protein (calmodulin) of bovine brain. J. Biol. Chem. 1980; 255: 962–975
  • Wegener A. D., Jones L. R. Phosphorylation-induced mobility shift in phospholamban in sodium dodecyl sulfate-polyacrylamide gels. Evidence for a protein structure consisting of multiple identical phosphorytable subunits. J. Biol. Chem. 1984; 259: 1834–1841
  • Wegener A. D., Simmerman H. K.B., Liepnieks J., Jones L. R. Proteolytic cleavage of phospholamban purified from canine cardiac sarcoplasmic reticulum vesicles. Generation of a low resolution model of phospholamban structure. J. Biol. Chem. 1986; 261: 5154–5159
  • Wendt-Gallitelli M. F., Wolburg H., Schlote W., Schwegler M., Holnbarsch C., Jacob R. Prospect of x-ray microanalysis of myocardial contraction. Basic Res. Cardiol. 1980; 75: 66–72
  • Will H, Blanck J., Smettan G., Wollenberger A. A quench-flow kinetic investigation of calcium ion accumulation by isolated cardiac sarcoplasmic reticulum. Dependence of initial velocity on free calcium concentration and influence of preincubation with a protein kinase, MgATP and cyclic AMP. Biochim. Biophys. Acta 1976; 449: 295–303
  • Will H, Levchenko T. S., Levitsky D. O., Smirnov V. N., Wollenberger A. Partial characterization of protein kinase-catalyzed phosphorylation of low molecular weight proteins in purified preparations of pigeon heart sarcolemmea and sarcoplasmic reticulum. Biochim. Biophys. Acta 1978; 543: 175–193
  • Wollenberger A. Cyclic nucleotides and the regulation of heart beat. Abstr. Fifth Int. Congr. Pharmacol. 1972; 231
  • Wray H. L., Gray R. R., Olsson R. A. Cyclic adenosine 3′,5′-monophosphate-stimulated protein kinase and a substrate associated with sarcoplasmic reticulum. J. Biol. Chem. 1973; 248: 1496–1498
  • Young E. F., Ferguson D. G., Kranias E. G. Immunogold localization of phospholamban in canine cardiac homogenates and microsomes. Biophys. J. 1987; 51: 350a

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.