6
Views
31
CrossRef citations to date
0
Altmetric
Original Article

Putative Cocaine Receptor in Striatum Is a Glycoprotein with Active Thiol Function

, , , &
Pages 207-220 | Published online: 09 Jul 2009

References

  • Abd–Elfattah A. S.A., Shamoo A. E. Regeneration of a functionally active rat brain muscarinic receptor by D–penicillamine after inhibition with methylmercury and mercuric chloride. Mol. Pharmacol. 1981; 20: 492–497
  • Biber J., Hauser H. The role of SH–groups in the concentrative transport of D–glucose into the brush border membrane vesicles. FEBS Lett. 1979; 180: 451–455
  • Calligaro D. O., Eldefrawi M. E. High affinity stereospecific binding of [3H]cocaine in striatum and its relationship to the dopamine transporter. Membrane Biochem. 1988; 7: 87–106
  • Cao C. J., Shamoo A., Eldefrawi M. E. Cocaine–sensitive ATP–dependent dopamine uptake into striatal synaptosomes. Biochem. Pharmacol. 1990; 39: R9–R15
  • Church W. H., Justice J. B., Byrd L. D. Extracellular dopamine in rat striatum following uptake inhibition by cocaine, nomifensine and benztropine. Eur. J. Pharmacol. 1987; 139: 345–348
  • Cohen L. A. Chemical modification as a probe of structure and function. The Enzymes, Structure and Control, P. D. Boyer. Academic Press, New York 1970; 167–211
  • Eldefrawi M. E., Eldefrawi A. T. Characterization and partial purification of the acetylcholine receptor from Torpedo electroplax. Proc. Natl. Acad. Sci. USA 1972; 69: 1776–1780
  • Galloway M. P. Neurochemical interactions of cocaine with dopaminergic systems. TIPS 1988; 9: 451–454
  • Goeders N. E., Smith J. E. Cortical dopaminergic involvement in cocaine reinforcement. Science 1983; 221: 773–775
  • Grigoriadis D. E., Wilson A. A., Lew R., Sharkey J. S., Kuhar M. J. Dopamine transport sites selectively labeled by a novel photoaffinity probe: 125I–DEEP. J. Neurosci. 1989; 9: 2664–2670
  • Holz R. W., Coyle J. T. The effect of various salts, temperature, and the alkaloids veratridine, batrachotoxin on the uptake of [3H]dopamine into synaptosomes from rat striatum. Mol. Pharmacol. 1974; 10: 746–758
  • Iverson L. L. Uptake process of biogenic amine. Handbook Psychopharmacol. 1975; 3: 381–430
  • Kennedy L. T., Hanbauer I. Sodium–sensitive cocaine binding to rat striatal membranes possible relationship to dopamine uptake sites. J Neurochem. 1983; 41: 172–178
  • Lee D. A., Witzemann V. The role of thiols in nucleotide uptake into synaptic vesicles for Torpedo marmorata. Eur. J. Pharmacol. 1987; 166: 553–558
  • Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. Protein measurement with folin reagent. J. Biol. Chem. 1951; 193: 265–275
  • McPherson G. A. A practical computer–based approach to the analysis of radioligand binding experiments. Computer Programs 1983; 17: 107–114
  • Meyerson L. R., Ieni J. R., Wennogle L. P. Allosteric interaction between the site labeled by [3H]imipramine and the serotonin transporter in human platelets. J. Neurochem. 1987; 48: 560–565
  • Munson P. J., Rodbard D. Ligand: A versatile computerized approach for characterization of ligand–binding systems. Anal. Biochem. 1980; 107: 220–239
  • Richelson E., Pfenning M. Blockade by antidepressants and related compounds by biogenic amine uptake into rat brain synaptosomes: Most antidepressants selectively block norepinephrine uptake. Eur. J. Pharmacol. 1982; 104: 272–286
  • Ritz M. C., Lamb R. J., Goldberg S. R., Kuhar M. J. Cocaine receptors on dopamine transporters are related to self–administration of cocaine. Science 1987; 237: 1219–1223
  • Roberts D. C.S., Koob G. Disruption of cocaine self–administration following 6–hydroxydopamine lesions of the ventral tegmental area in rats. Pharmacol. Biochem. Behav. 1982; 17: 901–904
  • Sator V., Raftery M. A., Martinez–Carrion M. N–(3–Pyrene)maleimide: A fluorescent probe of acetylcholine receptor–triton X–100 aggregate. Arch. Biochem. Biophys. 1978; 190: 57–66
  • Schoemaker H., Pinnoule C., Arbilla S., Scatton B., Javoy–Agid F., Langer S. Z. Sodium dependent [3H]cocaine binding associated with dopamine uptake sites in the rat striatum and human putamen decrease after dopaminergic denervation and in Parkinson's disease. N.–S. Arch. Pharmacol. 1985; 329: 227–235
  • Sershen H., Reith M. E.A., Hashim A., Lajtha A. Reduction of dopamine uptake and cocaine binding in mouse striatum by N–methyl–4–phenyl–1,2,3,6–tetrahydropyridine. Eur. J. Pharmacol. 1984; 102: 175–178
  • Sun I. Y.C., Johnson E. M., Allfrey V. G. Affinity purification of newly phosphorylated protein molecules. J. Biol. Chem. 1980; 255: 742–747
  • Wu C. –W., Yarborough L. R., Wu F. Y–H. N–(1–Pyrene)maleimides: A fluorescent cross–linking reagent. Biochemistry 1976; 15: 2863–2868
  • Zolaska M. M., Ereciuska M. Involvement of sialic acid in high–affinity uptake of dopamine by synaptosomes from rat brain. Neurosci. Lett. 1987; 82: 107–112

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.