11
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Epinephrine Regulation of Amino Acid Transport in Rat Hepatocytes Isolated During Development

, , &
Pages 117-128 | Received 10 May 1990, Accepted 18 Dec 1990, Published online: 09 Jul 2009

References

  • Assimacopoulos-Jeavinet F.D., Blackmore P.F., Exton J.H. Studies on α-adrenergic activation of hepatic glucose output. J. Biol. Chem. 1977; 252: 2662–2669
  • Barnard G.F., Erikson S.K., Cooper A.D. Lipoprotein metabolism by rat hepatomas. Studies on the etiology of defective dietary feedback inhibition of cholesterol synthesis. J. Clin. Invest. 1984; 74: 173–184
  • Bassett J.M., Fletcher J.M. Hormonal regulation of fetal metabolism and growth: The roles of pancreatic and adrenal hormones. The Biochemical Development of the Fetus and Neonate, C.T. Jones. Elsevier Biochemical Press, New York 1982; vol. 11: 406–425
  • Benovic J.L., Bouvier M., Caron M.G., Lefkowitz R.J. Regulation of adenylyl cyclase-coupled β-adrenergic receptors. Annu. Rev. Cell. Biol. 1988; 4: 405–428
  • Bitter R., Bohme H.J., Didt L., Goltzsch W., Hofmann E., Levin M.J., Sparmann G. Developmental changes in the levels of hepatic enzymes and their relation to metabolic functions. Adv. Enzyme Regulation 1978; 17: 37–57
  • Blair J.B., James M.E., Foster J.L. Adrenergic control of glucose output and adenosine 3′-5′ monophosphate level in hepatocytes from juvenile and adult rats. J. Biol. Chem. 1979; 254: 7570–7584
  • Canivet B., Fehlman M., Freychet P. Glucocorticoid and catecholamine stimulation of amino acid transport in rat hepatocytes. Mol. Cell. Endocrinol. 1980; 19: 253–261
  • Conti Devirgiliis L., Dini L., di Pierro A., Leoni S., Spagnuolo S., Stefanini S. An improved nonperfusion method for the isolation and purification of rat fetal and neonatal hepatocytes. Cell. Mol. Biol. 1981; 27: 687–694
  • Cruise J.L., Knechtle S.J., Bollinger R.R., Kuhn C., Michalopoulos G. Alpha 1-adrenergic effects and liver regeneration. Hepatology 1987; 7: 1189–1194
  • Cruise J.L., Houck A., Michalopoulos G. Early events in the regulation of hepatocyte DNA synthesis: The role of a-adrenergic stimulation. Scand. J. Gastroenterol. 1988; 23: 19–30
  • Cuezva J.M., Patel M.S. Plasma catecholamine concentrations in the newborn rat during the first six postnatal hours. Biol. Neonate 1982; 10: 45–51
  • Dax E.M., Partilla J.S., Pineyro M.A., Gregerman R.I. β-Adrenergic receptors, glucagon receptors, and the relationship to adenylate cyclase in the rat liver, during aging. Endocrinology 1987; 120: 1534–1541
  • Exton J.H. The role of calcium and phosphoinositides in the mechanisms of α-adrenergic and other agonists. Rev. Physiol. Biochem. Pharmacol. 1988; 3: 118–224
  • Garcia-Sainz J.A., Huerta Bahena M.E., Craig C.M. Hepatocyte β-adrenergic responsiveness and guanine nucleotide-binding regulatory proteins. Am. J. Physiol. 1989; 256: C384–C389
  • Girard J., Ferre P. Metabolic and hormonal changes around birth. The Biochemical Development of the Fetus and Neonate, C.T. Jones. Elsevier Biochemical Press, New York 1982; vol. 15: 517–541
  • Guellang G., Mates-Aggerbeck M., Vauquelins G., Strosberg D., Hanoune J. Characterization with 3H-dihydroergocriptine of the a-adrenergic receptor of the hepatic plasma membrane. J. Biol. Chem. 1978; 253: 1114–1120
  • Handlogten M.E., Kilberg M.S. Transport system A is not responsive to hormonal stimulation in primary culture of fetal rat hepatocytes. Biochem. Biophys. Res. Commun. 1982; 108: 1113–1118
  • Handlogten M.E., Kilberg M.S. Growth-dependent regulation of system A in SV40 transformed fetal rat hepatocytes. Am. J. Physiol. 1988; 255: C261–C270
  • Hernandez-Sotomayor S.M.T., Garcia—Sainz J.A. Adrenergic regulation of ureogenesis in hepatocytes from adrenalectomized rats. Possible involvement of two pathways of signal transduction in α1-adrenergic action. FEBS Lett. 1984; 166: 385–388
  • Huerta-Bahena J., Villalobos-Molina R., Garcia-Sainz J.A. Adrenergic responsivoness of liver cells formed after partial hepatectomy: Roles of α1- and β-adrenoceptors. Biochim. Biophys. Acta 1983; 763: 112–119
  • Katz M.S. Food restriction modulates β-adrenergic-sensitive adenylate cyclase in rat liver during aging. Am. J. Physiol. 1988; 254: E54–E62
  • Katz M.S., McNair C.L., Hymer T.K., Boland S.R. Emergence of β- adrenergic-responsive hepatic glycogenolysis in male rats during post maturational aging. Biochem. Biophys. Res. Commun. 1987; 147: 724–730
  • Kelley D.S., Evanson T., Van Potter R. Calcium dependent hormonal regulation of amino acid transport and cyclic AMP accumulation in rat hepatocytes monolayer cultures. Proc. Natl. Acad. Sci. 1980; 77: 5953–5957
  • Kovanen P.T., Basu S.K., Goldstein J.L., Brown M.S. Low density lipoprotein binding to membranes prepared from fresh tissue. Endocrinology 1979; 104: 610–616
  • Jones G.T., Rolph T. Metabolism during fetal life: a functional assessment of metabolic development. Physiol. Rev. 1985; 65: 357–400
  • Lacombe M.L., Hanoune J. Epinephrine binding by rat liver plasma membranes: Effect of guanyl nucleotides. Biochem. Biophys. Res. Commun. 1974; 59: 474–479
  • Le Cam A., Freychet P. Effect of catecholamines on amino acid transport in isolated rat hepatocytes. Endocrinology 1978; 102: 379–385
  • Leoni S., Spagnuolo S., Dini L., Conti Devirgilis L. Regulation of amino acid transport in isolated rat hepatocytes during development. J. Cell. Physiol. 1987; 130: 103–110
  • Leoni S., Spagnuolo S., Dini L., Massimi M., Conti Devirgilis L. Regulation of amino acid transport in hepatocytes isolated from adult and old rats. Mech. Aging Dev. 1988; 46: 19–27
  • Lowry O.H., Rosebrough N.F., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951; 193: 265–275
  • Lynch C.J., Charest R., Blackmore P.F., Exton J.H. Studies on the hepatic α-adrenergic receptor. J. Biol. Chem. 1985; 260: 1593–1600
  • Moldeus P., Hogberg J., Horrhenius S. Isolation and use of liver cells. Methods Enzymol. 1978; 52: 60–71
  • Moule S.K., Bradford N.M., McGivan J.D. Short-term stimulation of Na +-dependent amino acid transport by dibutyryl cyclic AMP in hepatocytes. Biochem. J. 1987; 241: 737–743
  • Pariza M.W., Butcher F.R., Becher J.E., Potter V. 3′-5′ cAMP-independent induction of amino acid transport by epinephrine in primary cultures of adult rat liver cells. Proc. Natl. Acad. Sci. 1977; 74: 234–237
  • Pujol M.J., Soriano M., Aligué R., Carafoli E., Bachs O. Effect of α- adrenergic blockers on calmodulin association with nuclear matrix of rat liver cells during proliferative activation. J. Biol. Chem. 1989; 264: 18863–18865
  • Reilly T.M., Blecher M. On the mechanism of isoproterenol-induced desensitization of adenylate cyclase in cultured differentiated hepatocytes. Biochim. Biophys. Acta 1982; 720: 126–132
  • Saier M.H., Daniels G. A., Jr., Boerner P., Lin J. Neutral amino acid transport systems in animal cells: Potential target of oncogene action and regulators of cellular growth. J. Membrane Biol. 1988; 104: 1–20
  • Samson M., Fehlmann M. Plasma membrane vesicles from isolated hepatocytes retain the increase of amino acid transport induced by dibutyryl cyclic AMP in intact cells. Biochim. Biophys. Acta 1982; 687: 35–41
  • Schleifer L.S., Black I.B., Reid L.M. Regulation of beta adrenergic receptor expression in rat liver. J. Cell. Physiol. 1989; 140: 52–58
  • Sperling M.A., Ganguli S., Leslie N., Landt K. Fetal perinatal catecholamine secretion: role in perinatal glucose homeostasis. Am. J. Physiol. 1984; 247: E69–E74
  • Stiles G.L., Garon M.G., Lefkowitz R.J. β-Adrenergic receptors: biochemical mechanisms of physiological regulation. Physiol. Rev. 1984; 64: 661–741
  • Studer R.K., Snowdowne K.W., Borle A.B. Regulation of hepatic glycogenolysis by glucagon in male and female rats. J. Biol. Chem. 1984; 259: 3596–3604
  • Tolbert M.E.M., Butcher F.R., Fain J.N. Lack of correlation between catecholamine effects on cyclic adenosine 3′-5′ monophosphate and gluconeogenesis in isolated rat liver cells. J. Biol. Chem. 1973; 248: 5686–5692
  • Tsujmoto A.A., Tsujmoto G., Ashar S., Hoffman B.B. Altered responsiveness to α and β-adrenoceptor stimulation in hepatocytes cultured in defined medium. Biochem. Pharmacol. 1986; 35: 1400–1404
  • Vadgama J.V., Christensen H.N. Characterization of neutral amino acid transport systems in fetal hepatocytes. Fed. Proc. 1983; 42: 1939, abstr
  • Witney R.B., Sutherland R.M. Effects of chelating agents on the initial interaction of fyto-hemoagglutinin with lymphocyte and subsequent stimulation of amino acid uptake. Biochim. Biophys. Acta 1973; 298: 790–797
  • Woodlock T.J., Segal G.B., Lichman M.A. Diacylglycerol and calcium induce rapid enhancement of A-system amino acid transport by independent mechanisms in human T lymphocytes. J. Cell. Physiol. 1989; 141: 33–39

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.