8
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Stimulation of Canine Kidney BBMV ATPase Activity by Acidic pH in the Presence of Zn2+: An ATPase Activity Distinct from Transport ATPases and Alkaline Phosphatase That May Be an Ecto-ATPase

&
Pages 69-81 | Received 01 Dec 1989, Accepted 09 Jul 1990, Published online: 09 Jul 2009

References

  • Boyd C. A.R., Chipperfield A. R. Are alkaline phosphatase and bicarbonate–dependent ATPase the same enzyme?. J. Physiol. 1980; 303: 63P
  • Busse D., Pohl B., Bartel H., Buschmann F. The Mg+2–dependent adenosine triphosphatase activity in the brush border of rabbit kidney cortex. Arch. Biochem. Biophys. 1980; 201: 147–159
  • de Jonge H. R., Ghusen W. E.J.M., van Os C. H. Phosphorylated intermediates of Ca2+ –ATPase and alkaline phosphatase in plasma membranes from rat duodenal epithelium. Biochim. Biophys. Acta 1981; 647: 140–149
  • DeSmedt H., Parys J. B., Borghgrad R., Wuytack F. Phosphorylated intermediates of (Ca2+ + Mg2+)–ATPase and alkaline phosphatase in renal plasma membranes. Biochim. Biophys. Acta 1983; 728: 409–418
  • Felix R., Fleish H. The pyrophosphatase and (Ca+2 – Mg+2)–ATPase activity of purified calf bone alkaline phosphatase. Biochim. Biophys. Acta 1974; 350: 84–94
  • Fernley H. N. Mammalian alkaline phosphatases. The enzymes, P. D. Boyer. Academic Press, New York 1977; Vol. IV: 417–447
  • Fishman W. H., Green S., Inglis N. I. L–Phenylalanine: An organ specific, stereospecific inhibitor of human intestinal alkaline phosphatase. Nature (Lond.) 1963; 198: 685–686
  • Forbush B., III. Assay of Na, K–ATPase in plasma membrane preparations. Increasing the permeability of membrane vesicles using sodium dodecyl sulfate buffered with bovine serum albumin. Anal. Biochem. 1983; 128: 159–163
  • Gerencser G. A., Lee S. Cl––HCO–3–stimulated ATPase in intestinal mucosa of Aplysia. Am. J. Physiol. 1985; 248: R241–R248
  • Good N. E., Isawa S. Hydrogen ion buffers. Methods Enzymol. 1972; 24: 53–68
  • Gordon J. L. Extracellular ATP: Effects, sources and fate. Biochem. J. 1986; 233: 309–319
  • Hammerman M. R. Phosphorylation of type III cAMP–dependent protein kinase in renal brush border membranes. Am. J. Physiol. 1986; 250: F659–F666
  • Haussler M. R., Nagode L. A., Rasmussen H. J. Induction of intestinal brush border alkaline phosphatase by vitamin D and identity with Ca–ATPase. Nature (Lond.) 1970; 282: 1199–1201
  • Hilden S. A., Johns C. A., Guggino W. B., Madias N. E. Techniques for isolation of brush border and basolateral membrane vesicles from dog kidney cortex. Biochim. Biophys. Acta 1989; 983: 77–81
  • Hilden S. A., Johns C. A., Madias N. E. Cl––dependent ATP–driven H+ transport in rabbit renal cortical endosomes. Am. J. Physiol. 1988; 255: F885–F897
  • Hollander V. P. Acid phosphatases. The enzymes, P. D. Boyer. Academic Press, New York 1977; Vol. IV: 449–498
  • Humphreys M. H., Chou L. Y. Anion–stimulated ATPase activity of the brush border from rat small intestine. Am. J. Physiol. 1979; 236: E70–E76
  • Humphreys M. H., Kaysen G. A., Chou L. U., Watson J. B. Anion–stimulated phosphohydrolase activity of intestinal alkaline phosphatase. Am. J. Physiol. 1980; 238: G3–G9, Gastrointest. Liver Physiol.
  • Kinne–Saffran E., Beauwens R., Kinne R. An ATP–driven proton pump in brush–border membranes from rat renal cortex. J. Membrane Biol. 1982; 64: 67–76
  • Kinne–Saffran E., Kinne R. Further evidence for the existence of an intrinsic bicarbonate–stimulated Mg2+–ATPase in brush border membranes isolated from rat kidney cortex. J. Membrane Biol. 1979; 49: 235–254
  • Knauf H., Sellinger M., Haag K., Wais U. Evidence for mitochondrial origin of the HCO–3–ATPase in brush border membranes of rat proximal tubules. Am. J. Physiol. 1985; 248: F389–F395
  • Knowles A. Differential expression of ecto Mg2+–ATPase and ecto Ca2+–ATPase activities in human hepatoma cells. Arch. Biochem. Biophys. 1988; 263: 264–271
  • Liang C. T., Sacktor B. Bicarbonate–stimulated ATPase in the renal proximal tubule luminal (brush border) membrane. Arch. Biochem. Biophys. 1976; 176: 285–297
  • Low M. G. The glycosyl–phosphatydylinositol anchor of membrane proteins. Biochim. Biophys. Acta 1989; 988: 427–454
  • Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951; 193: 265–275
  • Mandel L. J., Takano T., Soltoff S. P., Murdaugh S. Mechanisms whereby exogenous adenine nucleotides improve rabbit renal proximal function during and after anoxia. J. Clin. Invest. 1988; 81: 1255–1264
  • Majeska R. J., Werthier R. E. Association of pyrophosphatase and ATPase activities with alkaline phosphatase. Biochim. Biophys. Acta 1975; 391: 51–60
  • McComb R. B., Bowers G. N., Posen S. Alkaline phosphatase. Plenum Press, New York 1979
  • Misanko B. S., Solomon S. Activity of HCO–3–stimulated ATPase in the acidotic rat kidney. Mineral Electrolyte Metab. 1981; 6: 217–226
  • Monod A., Bonjour J. P., Fleisch H. Relation between alkaline phosphatase and Ca2+ –ATPase in calcium transport. Nature New Biol. 1972; 240: 128–129
  • Mortl M., Busse D., Bartl H., Pohl B. Partial purification and characterization of rabbit–kidney brush border (Ca+2 or Mg +2)–dependent adenosine triphosphatase. Biochim. Biophys. Acta 1984; 776: 237–246
  • Parkinson D., Radde I. Properties of a Ca2+– and Mg2+–activated ATP–hydrolyzing enzyme in rat kidney cortex. Biochim. Biophys. Acta 1971; 242: 238–246
  • Sacktor B. Transport in membrane vesicles isolated from the mammalian kidney and intestine. Current topics in bioenergetics, D. R. Sanadi, L. P. Vernon. Academic Press, New York 1977; Vol. 6: 39–81
  • Seetharam B., Tiruppathi C., Alpers D. H. Hydrophobic interactions of brush border alkaline phosphatases; The role of phosphatidyl inositol. Arch. Biochem. Biophys. 1987; 253: 189–198
  • Soumaren A., Lavin M., Cheret A. M., Bonfils S. Gastric HCO–3–stimulated ATPase: Evidence against its microsomal localization in rat fundus mucosa. Biochim. Biophys. Acta 1974; 339: 403–414
  • Stanley K. K., Newby A. C., Luzio J. P. What do ectoenzymes do?. Trends Biochem. Sci. 1982; 22: 145–147
  • Stromski M. E., Cooper K., Thulin G., Avison M. J., Gaudio K. M., Shulman R. G., Siegel N. J. Postischemic ATP–MgCl2 provides precursors for resynthesis of cellular ATP in rats. Am. J. Physiol. 1986; 250: F834–F837, Renal Fluid Electrolyte Physiol. 19
  • Tietz N. W., Bustis C. A., Duncan P., Erwin K., Petitcine C. J., Rinker A. D., Shuey A. D., Zygowicz E. R. A reference method for measurement of alkaline phosphatase activity in human serum. Clin. Chem. 1983; 29: 751–761
  • Turrini F., Sabolic I., Zimolo Z., Moewes B., Burckhardt G. Relationship of ATPases in rat renal brush border membranes to ATP–driven H+ secretion. J. Membrane Biol. 1989; 107: 1–12
  • van Amelsvoort J. M.M., de Pont J. J.H.H.M., Bonting S. L. Is there a plasma membrane–located anion–sensitive ATPase?. Biochim. Biophys. Acta 1977; 466: 283–301
  • van Erum M., Martens L., Vanduffe L., Teuchy H. The localization of (Ca2+ or Mg2+)–ATPase in plasma membranes of renal proximal tubular cells. Biochim. Biophys. Acta 1988; 937: 145–152
  • Wais U., Knauf H. The role of HCO–3 stimulated ATPase in buffer transport. Renal metabolism in relation to renal function, U. Schmidt, U. C. Dubach. Hans Huber, Bern 1976; 154–161
  • Williams S. A., Gulp J. S., Butler L. G. The relationship of alkaline phosphatase, Ca ATPase and phytase. Arch. Biochem. Biophys. 1985; 241: 10–13
  • Yusuf A. N.K., Dousa T. P. Studies on rabbit kidney brush border membranes: Relationship between phosphate transport, alkaline phosphatase and NAD. Mineral Electrolyte Metab. 1987; 13: 397–404

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.