37
Views
32
CrossRef citations to date
0
Altmetric
Original Article

Does the binding of clusters of basic residues to acidic lipids induce domain formation in membranes?

, , &
Pages 69-75 | Published online: 09 Jul 2009

References

  • Adam G., Delbrück M. Reduction of dimensionality in biological diffusion processes. Structural Chemistry and Molecular Biology, A. Rich, N. Davidson. W. H. Freeman & Co., San Francisco, CA 1968; 198–215
  • Adams R. J., Pollard T. D. Binding of myosin I to membrane lipids. Nature 1989; 340: 565–568
  • Aderem A. The MARCKS brothers: a family of protein kinase C substrates. Cell 1992; 71: 713–716
  • Aveyard R., Haydon D. A. Introduction to the Principles of Surface Chemistry. Cambridge University Press, Cambridge, UK 1973; 7–9
  • Axelrod D., Wang M. D. Reduction-of-dimensionality kinetics at reaction-limited cell surface receptors. Biophysical Journal 1994; 66: 588–600
  • Bazzi M. D., Nelsestuen G. L. Extensive segregation of acidic phospholipids in membranes induced by protein kinase C and related proteins. Biochemistry 1991; 30: 7961–7969
  • Berridge M. J. Inositol trisphosphate and calcium signaling. Nature 1993; 361: 315–325
  • Blackshear P. J. The MARCKS family of cellular protein kinase C substrates. Journal of Biological Chemistry 1993; 268: 1501–1504
  • Boguslavsky V., Rebecchi M., Morris A. J., Jhon D. Y., Rhee S. G., McLaughlin S. Effect of monolayer surface pressure on the activities of the phosphoinositide-specific phospholipase C-β1, -γ1, and -δ1. Biochemistry 1994; 33: 3032–3037
  • Buser C. A., Sigal C, Resh M. D., Mc Laughlin S. Membrane binding of myristoylated peptides corresponding to the NH2-terminal region of Src. Biochemistry 1994; 33: 13093–13101
  • Carpenter G. Receptor tyrosine kinase substrates: src homology domains and signal transduction. FASEB Journal 1992; 6: 3283–3289
  • Crothers D. M., Metzger M. The influence of polyvalency on the binding properties of antibodies. Immunochemistry 1972; 9: 341–357
  • de Kruijff B., Rietveld A., Telders N., Vaandrager B. Molecular aspects of the bilayer stabilization induced by poly(L-lysines) of varying size in cardiolipin liposomes. Biochimica et Biophysica Acta 1985; 820: 295–304
  • Devaux P. F. Protein involvement in transmembrane lipid asymmetry. Annual Review of Biophysics and Biomolecular Structure 1992; 21: 417–439
  • Devaux P. F. Lipid transmembrane asymmetry and flip-flop in biological membranes and lipid bilayers. Current Opinion in Structural Biology 1993; 3: 489–494
  • Gawrisch K., Han K. H., Yang J. S., Bergelson L. D., Ferretti J. A. Interaction of peptide fragment 828–84, of the envelope glycoprotein of human immunodeficiency virus type I with lipid bilayers. Biochemistry 1993; 32: 3112–3118
  • Hancock J. F., Paterson H., Marshall C. J. A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 1990; 63: 133–139
  • Hannun Y. A., Loomis C. R., Bell R. M. Activation of protein kinase C by Triton X-100 mixed micelles containing diacylglycerol and phosphatidylserine. Journal of Biological Chemistry 1985; 260: 10039–10043
  • Hartmann E., Rapoport T. A., Lodish H. F. Predicting the orientation of eukaryotic membrane-spanning proteins. Proceedings of the National Academy of Sciences, USA 1989; 86: 5786–5790
  • Israelachvili J. N., Wennerström H. Entropic forces between amphiphilic surfaces in liquids. Journal of Physical Chemistry 1992; 96: 520–531
  • Jacobson K. Lateral diffusion in membranes. Cell Motility 1983; 3: 367–373
  • Kaplan J. M., Varmus H. E., Bishop J. M. The src protein contains multiple domains for specific attachment to membranes. Molecular and Cellular Biology 1990; 10: 1000–1009
  • Kauzmann W. Some factors in the interpretation of protein denaturation. Advances in Protein Chemistry 1959; 14: 1–63
  • Kim J., Mosior M., Chung L. A., Wu H., McLaughlin S. Binding of peptides with basic residues to membranes containing acidic phospholipids. Biophysical Journal 1991; 60: 135–148
  • Kim J., Blackshear P. J., Johnson J. D., McLaughlin S. Phosphorylation reverses the membrane association of peptides that correspond to the basic domains of MARCKS and neuromodulin. Biophysical Journal 1994a; 67: 227–237
  • Kim J., Shishido T., Jiang X., Aderem A., McLaughlin S. Phosphorylation, high ionic strength, and calmodulin reverse the binding of MARCKS to phospholipid vesicles. Journal of Biological Chemistry 1994b; 269: 28214–28219
  • Li D., Miller M., Chantler P. D. Association of a cellular myosin II with anionic phospholipids and the neuronal plasma membrane. Proceedings of the National Academy of Sciences, USA 1994; 91: 853–857
  • Mc Laughlin S. Electrostatic potentials at membrane-solution interfaces. Current Topics in Membranes and Transport 1977; 9: 71–144
  • Mc Laughlin S. The electrostatic properties of membranes. Annual Review of Biophysics and Biophysical Chemistry 1989; 18: 113–136
  • Montich G., Scarlata S., Mc Laughlin S., Lehrmann R., Seelig J. Thermodynamic characterization of the association of small basic peptides with membranes containing acidic lipids. Biochimica et Biophysica Acta 1993; 1146: 17–24
  • Mosior M., Epand R. M. Mechanism of activation of protein kinase C: roles of diolein and phosphatidylserine. Biochemistry 1993; 32: 66–75
  • Mosior M., McLaughlin S. Peptides that mimic the pseudosubstrate region of protein kinase C bind to acidic lipids in membranes. Biophysical Journal 1991; 60: 149–159
  • Mosior M., McLaughlin S. Electrostatics and reduction of dimensionality produce apparent cooperatively when basic peptides bind to acidic lipids in membranes. Biochimica et Biophysica Acta 1992a; 1105: 185–187
  • Mosior M., McLaughlin S. Electrostatics and dimensionality can produce apparent cooperativity when protein kinase C and its substrates bind to acidic lipids in membranes. Protein Kinase C: Current Concepts and Future Perspectives, R. Epand, D. Lester. Ellis Horwood, Chichester 1992b; 157–180
  • Mosior M., McLaughlin S. Binding of basic peptides to acidic lipids in membranes: effects of inserting alanine(s) between the basic residues. Biochemistry 1992c; 31: 1767–1773
  • Newton A. C. Interaction of proteins with lipid headgroups: lessons from protein kinase C. Annual Review of Biophysics and Biomolecular Structure 1993; 22: 1–25
  • Newton A. C., Koshland D. E. High cooperativity, specificity, and multiplicity in the protein kinase C-lipid interaction. Journal of Biological Chemistry 1989; 294: 14909–14915
  • Nilsson I., vonHeijne G. Fine-tuning the topology of a polytopic membrane protein: role of positively and negatively charged amino acids. Cell 1990; 62: 1135–1141
  • Op den Kamp J. A. F. Lipid asymmetry in membranes. Annual Review of Biochemistry 1979; 48: 47–71
  • Peitzsch R. M., Mc Laughlin S. Binding of acylated peptides and fatty acids to phospholipid vesicles: pertinence to myristoylated proteins. Biochemistry 1993; 32: 10436–10443
  • Peitzsch R. M., Eisenberg M., Sharp K., McLaughlin S. Calculating electrostatic potentials adjacent to phospholipid membranes using the nonlinear Poisson-Boltzmann equation. Biophysical Journal 1994; 66: A61
  • Perutz M. F. Mechanisms of Cooperativity and Allosteric Regulation in Proteins. Cambridge University Press, Cambridge, UK 1990; 76
  • Pollard T. D., Doberstein S. K., Zot H. G. Myosin-I. Annual Review of Physiology 1991; 53: 653–681
  • Rebecchi M., Peterson A., McLaughlin S. Phosphoinositide-specific phospholipase C-δ1, binds with high affinity to phospholipid vesicles containing phosphatidylinositol 4, 5-bisphosphate. Biochemistry 1992; 31: 12742–12747
  • Resh M. D. Interaction of tyrosine kinase oncoproteins with cellular membranes. Biochimica et Biophysica Acta 1993; 1155: 307–322
  • Reynolds J. A. Interaction of a divalent antibody with cell surface antigens. Biochemistry 1979; 18: 264–269
  • Roux M., Neumann J., Bloom M., Devaux P. F. 2H and 31P NMR study of pentalysine interaction with headgroup deuterated phosphatidylcholine and phosphatidylserine. European Biophysical Journal 1988; 16: 267–273
  • Sankaram M. B., Brophy P. J., Marsh D. Selectivity of interaction of phospholipids with bovine spinal cord myelin basic protein studied by spin-label electron spin resonance. Biochemistry 1989; 28: 9699–9707
  • Sawai T., Negishi M., Nishigaki N., Ohno T., Ichikawa A. Enhancement by protein kinase C of prostacyclin receptor-mediated activation of adenylate cyclase through a calmodulin/myristoylated alanine-rich C kinase substrate (MARCKS) system in IC2 mast cells. Journal of Biological Chemistry 1993; 268: 1995–2000
  • Sigal C. T., Zhou W., Buser C. A., Mc Laughlin S., Resh M. D. The amino terminal basic residues of Src mediate membrane binding through electrostatic interaction with acidic phospholipids. Proceedings of the National Academy of Sciences, USA 1994; 91, in press
  • Silvius J. R., I'Heureux F. Fluorimetric evaluation of the affinities of isoprenylated peptides for lipid bilayers. Biochemistry 1994; 33: 3015–3022
  • Sternweis P. C., Smrcka A. V. Regulation of phospholipase C by G proteins. Trends in Biochemical Sciences 1992; 17: 502–506
  • Taniguchi H., Manenti S. Interaction of myristoylated alanine-rich protein kinase C substrate (MARCKS) with membrane phospholipids. Journal of Biological Chemistry 1993; 268: 9960–9963
  • Thelen M., Rosen A., Nairn A. C., Aderem A. Regulation by phosphorylation of reversible association of a myristoylated protein kinase C substrate with the plasma membrane. Nature 1991; 351: 320–322
  • Wang J. K. T., Walaas S. I., Sihra T. S., Aderem A., Greengard P. Phosphorylation and associated translocation of the 87-kDa protein, a major protein kinase C substrate, in isolated nerve terminals. Cell Biology 1989; 66: 2253–2256
  • Wu D., Jiang H., Katz A., Simon M. I. Identification of critical regions on phospholipase C-β1, required for activation by G-proteins. Journal of Biological Chemistry 1993; 268: 3704–3709
  • Zheng J., Knighton D. R., Xuong N. H., Taylor S. S., Sowadski J. M., Ten Eyck L. F. Crystal structures of the myristylated catalytic subunit of cAMP-dependent protein kinase reveal open and closed conformations. Protein Science 1993; 2: 1559–1573

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.