22
Views
30
CrossRef citations to date
0
Altmetric
Original Article

The exocytotic fusion pore interface: a model of the site of neurotransmitter release

, &
Pages 151-156 | Published online: 09 Jul 2009

References

  • Aimers W., Tse F. W. Transmitter release from synapses: does a preassembled fusion pore initiate exocytosis. Neuron 1990; 4: 813–818
  • Alvarez de Toledo G., Fernandez J. M. The events leading to secretory granule fusion. Cell Physiology of Blood. Rockefeller University Press. 1988; 334–344
  • Alvarez de Toledo G., Fernandez-Chacon R., Fernandez J. M. Release of secretory products during transient vesicle fusion. Nature 1993; 363: 554–557
  • Breckenridge L. J., Aimers W. Currents through the fusion pore that forms during exocytosis of a secretory vesicle. Nature 1987a; 328: 814–817
  • Breckenridge L. J., Aimers W. Final steps in ecocytosis observed in a cell with giant secretory granules. Proceedings of the National Academy of Sciences, USA 1987b; 84: 1945–1949
  • Chandler D. E., Heuser J. E. Arrest of membrane fusion events in mast cells by quick-freezing. Journal of Cell Biology 1980; 86: 666–674
  • Chernomordik L. V., Melikyan G. B., Chizmadzhev Y. A. Biomembrane fusion: a new concept derived from model studies using two interacting planar lipid bilayers. Biochimica et Biophysica Acta 1987; 906: 309–352
  • Fernandez J. M., Neher E., Gomperts B. D. Capacitance measurements reveal stepwise fusion events in degranulating mast cells. Nature 1984; 312: 453–455
  • Gruner S. M. Intrinsic curvature hypothesis for biomembrane lipid composition: a role for nonbilayer lipids. Proceedings of the National Academy of Sciences, USA 1985; 82: 3665–3669
  • Helfrich W. Elastic properties of lipid bilayers: theory and possible experiments. Zeitschrift fuer Naturforschung, Section C 1973; 28: 693–703
  • Helm C. A., Israelachvili J. N. Forces between phospholipid bilayers and relationship to membrane fusion. Methods in Enzymology 1993; 220: 130–143
  • Helm C. A., Israelachvili J. N., McGuiggan P. M. Molecular mechanisms and forces involved in the adhesion and fusion of amphiphilic bilayers. Science 1989; 246: 919–922
  • Helm C. A., Israelachvili J. N., McGuiggan P. M. Role of hydrophobic forces in bilayer adhesion and fusion. Biochemistry 1992; 31: 1794–1805
  • Heuser J. E., Reese T. S. Structural changes after transmitter release at the frog neuromuscular junction. Journal of Cell Biology 1981; 88: 564–580
  • Hoffmann W., Sarzala M. G., Gomez-Fernandez J. C., Goni F. M., Restall C. J., Chapman D. Protein rotational diffusion and lipid structure of reconstituted systems of Ca2+-activated adenosine triphosphatase. Journal of Molecular Biology 1980; 141: 119–132
  • Kemble G. W., Danieli T., White J. M. Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion. Cell 1994; 76: 383–391
  • Knoll G., Braun C., Plattner H. Quenced flow analysis of exocytosis in Paramecium cells: time course, changes in membrane structure, and calcium requirements revealed after rapid mixing and rapid freezing of intact cells. Journal of Cell Biology 1991; 113: 1295–1304
  • Kozlov M. M., Leikin S. L., Chernomordik L. V., Markin V. S., Chizmadzhev Y. A. Stalk mechanism of vesicle fusion. Intermixing of aqueous contents. European Biophysics Journal 1989; 17: 121–129
  • Leckband D. E., Helm C. A., Israelachvili J. N. Rote of calcium in the adhesion and fusion of bilayers. Biochemistry 1993; 32: 1127–1140
  • Lindau M., Nusse O., Bennett J., Cromwell O. The membrane fusion events in degranulating guiea pig eosinophils. Journal of Cell Science 1993; 104: 203–209
  • Krasne S., Eisenman G., Szabo G. Freezing and melting of lipid bilayers and the mode of action of nonactin, valinomycin, and gramicidin. Science 1971; 174: 412–415
  • Markin V. S., Kozlov M. M., Borovjagin V. L. On the theory of membrane fusion. The stalk mechanism. General Physiology and Biophysics 1984; 5: 361–377
  • Monck J. R., Fernandez J. M. The exocytotic fusion pore. Journal of Cell Biology 1992; 119: 1395–1404
  • Monck J. R., Fernandez J. M. The exocytotic fusion pore and neurotransmitter release. Neuron 1994; 12: 707–716
  • Monck Ft J., Alvarez de Toledo G., Fernadez J. M. Tension in secretory granule membranes causes extensive membrane transfer through the exocytotic fusion pore. Proceedings of the National Academy of Sciences, USA 1990; 87: 7804–7808
  • Monck J. R., Oberhauser A. F., Alvarez deToledo G., Fernandez J. M. Is swelling of the secretory granule matrix the force that dilates the exocytotic fusion pore. Biophysical Journal 1991a; 59: 39–47
  • Monck J. R., Oberhauser A. F., Alvarez de Toledo G., Fernandez J. M. Tension in secretory granule membrane transfer through the exocytotic fusion pore. Biophysical Journal 1991b; 59: 207a
  • Nakata T., Hirokawa N. Organization of cortical cytoskeleton of cultured chromaffin cells and involvement in secretion as revealed by quick-freeze, deep-etching and double-label and immunoelectron microscopy. Journal of Neuroscience 1991; 12: 2186–2197
  • Nanavati C., Fernandez J. M. The secretory granule matrix: a fast-acting smart polymer. Science 1993; 259: 963–965
  • Nanavati C., Markin V. S., Oberhauser A., Fernandez J. M. The exocytotic fusion pore modeled as a lipidic pore. Biophysical Journal 1992; 63: 1118–1132
  • Oberhauser A. F., Fernandez J. M. Patch-clamp studies of intact secretory granules. Biophysical Journal 1993; 65: 1844–1852
  • Oberhauser A. F., Monck J. R., Fernandez J. M. Events leading to the opening and closing of the exocytotic fusion pore have markedly different temperaturre dependencies. Kinetic analysis of single fusion events in patch-clamped mouse mast cells. Biophysical Journal 1992a; 61: 800–809
  • Ohki S. Surface tension, hydration energy and membrane fusion. Molecular Mechanisms of Membrane Fusion, S. Ohki, D. Doyle, T. D. Flanagan, S. Withers, E. Mayhew. Plenum Press, New York 1987; 123–137
  • Ornberg R. L., Reese T. S. Beginning of exocytosis captured by rapid-freezing of Limulus amebocytes. Journal of Cell Biology 1981; 90: 40–54
  • Pollard H. B., Rojas E., Pastor R. W., Rojas E. M., Guy H. R., Burns A. L. Synexin: molecular mechanism of calcium-dependent membrane fusion and voltage-dependent calcium-channel activity. Annals of the New York Academy of Sciences 1991; 635: 328–351
  • Rand R. P. Interacting phospholipid bilayers: measured forces and induced structural changes. Annual Reviews of Biophysics and Bioengineering 1981; 10: 277–314
  • Rothman J. E., Orci L. Molecular dissection of the secretory pathway. Nature 1992; 355: 409–415
  • Schmidt W., Patzak A., Lingg G., Winkler H. Membrane events in adrenal chromaffin cells during exocytosis: a freeze-etching analysis after rapid cryofixation. European Journal of Cell Biology 1983; 32: 31–37
  • Song L., Ahkong Q. F., Georgescauld D., Lucy J. A. Membrane fusion without cytoplasmic fusion (hemi-fusion) in erythrocytes that are subjected to electrical breakdown. Biochima et Biophysica Acta 1991; 106: 554–62
  • Spruce A. E., Breckenridge L. J., Lee A. K., Aimers W. Properties of the fusion pore that forms during exocytosis of a mast cell secretory vesicle. Neuron 1990; 4: 643–654
  • Sudhof T. C., Jahn R. Proteins of synaptic vesicles involved in exocytosis and membrane recycling. Neuron 1991; 6: 665–677
  • Thomas L., Hartung K., Langosch D., Rehm H., Banberg E., Franke W. W., Betz H. Identification of synaptophysin as a hexameric channel protein of the synaptic vesicle membrane. Science 1988; 242: 1050–1053
  • Verdugo P. Mucin exocytosis. American Review of Respiratory Disease 1991; 144: S33–S37
  • Volknandt W., Zimmermann H. Acetylcholine, ATP, and proteoglycan are common to synaptic vesicles isolated from the electric organs of electric ell and electric catfish as well as from rat diaphragm. Journal of Neurochemistry 1986; 47: 1449–1462
  • White J. M. Membrane fusion. Science 1992; 258: 917–924
  • Zimmerberg J., Curran M., Cohen F. S., Brodwick M. Simultaneous electrical and optical measurements show that membrane fusion precedes secretory granule swelling during exocytosis of beige mouse mast cells. Proceedings of the National Academy of Sciences, USA 1987; 84: 1585–1589

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.