41
Views
56
CrossRef citations to date
0
Altmetric
Original Article

Do band 3 protein conformational changes mediate shape changes of human erythrocytes?

&
Pages 247-254 | Received 29 Nov 1994, Published online: 09 Jul 2009

References

  • Bifano E. M., Novak T. S., Freedman J. C. Relationship between the shape and the membrane potential of human red blood cells. Journal of Membrane Biology 1984; 82: 1–13
  • Bjerrum P. J. The human erythrocyte anion transport protein, band 3. Journal of General Physiology 1992; 100: 301–339
  • Blank M. E., Hoefner D. M., Diedrich D. F. Morphology and volume alterations of human erythrocytes caused by the anion transporter inhibitors, DIDS and p-azidobenzylphlorizin. Biochimica et Biophysica Acta 1994; 1118: 223–233
  • Brahm J., Gasbjerg P., Funder J. Kinetics of anion transport across the red cell membrane. The Band 3 Proteins: Anion Transporters, Binding Proteins and Senescence Antigens, E. Bamberg, H. Passow. Elsevier, Amsterdam 1992; 25–33
  • Brumen M., Heinrich R., Herrmann A., Müller P. Mathematical modelling of lipid transbilayer movement in the human erythrocyte plasma membrane. European Biophysical Journal 1993; 22: 213–223
  • Cabantchik Z. I., Barnoy S., Pollard H. B., Raviv Y. Molecular probing of a hydrophilic/hydrophobic interface in the transport domain of the anion exchange protein. The Band 3 Proteins: Anion Transporters, Binding Proteins and Senescence Antigens, E. Bamberg, H. Passow. Elsevier, Amsterdam 1992; 51–57
  • Canfield V. A., Macey R. I. Pressure dependence of anion transport in erythrocyte. The Band 3 Proteins: Anion Transporters, Binding Proteins and Senescence Antigens, E. Bamberg, H. Passow. Elsevier, Amsterdam 1992; 45–49
  • Elgsaeter A., Mikkelsen A. Shape and shape changes in vitro in normal red blood cells. Biochimica et Biophysica Acta 1991; 1071: 273–290
  • Engström K. G., Möller B., Meiselman H. J. Optical evaluation of red blood cell geometry using micropipette aspiration. Blood Cells 1992; 8: 241–258
  • Falke J. J., Chan S. I. Molecular mechanisms of band 3 inhibitors. 1. Transport site inhibitors. Biochemistry 1986a; 25: 7888–7894
  • Falke J. J., Chan S. I. Molecular mechanisms of band 3 inhibitors. 2. Channel blockers. Biochemistry 1986b; 25: 7895–7898
  • Falke J. J., Chan S. I. Molecular mechanisms of band 3 inhibitors. 3. Translocation inhibitors. Biochemistry 1986c; 25: 7899–7906
  • Fujii T., Sato T. A., Wakatsuki M., Kanaho Y. Shape changes of human erythrocytes induced by various amphipathic drugs acting on the membrane of the intact cell. Biochemical Pharmacology 1979; 28: 613–620
  • Fujii T., Tamura A., Yamane T. Trans-bilayer movement of added phosphatidylcholine and lysophosphatidylcholine species with various acyl chain lengths in plasma membrane of intact human erythrocytes. Journal of Biochemistry 1985; 98: 1221–1227
  • Glaser R. Echinocyte formation induced by potential changes of human red blood cells. Journal of Membrane Biology 1982; 66: 79–85
  • Glaser R., Donath J. Stationary ionic states in human red blood cells. Bioelectrochemistry and Bioenergetics 1984; 13: 71–84
  • Glaser R., Gengnagel C., Donath J. The influence of valinomycine-induced membrane potential on erythrocyte shape. Biomedica et Biochimica Acta 1991; 50: 869–877
  • Glibowicka M., Winckler B., Aranibar N., Schuster M., Hanssum H., Rüterjans H., Passow H. Temperature dependence of anion transport in the human red blood cell. Biochimica et Biophysica Acta 1988; 946: 345–358
  • Grebe R., Zuckermann M., Schmid-Schönbein H. Erythrocyte shape is influenced by free electric and chemical energy. Electromagnetic Fields and Biomembranes, M. Markov, M. Blank. Plenum Press, New York 1988; 141–144
  • Grygorczyk R., Schwarz W., Passow H. Studies on inactivation of the ‘electrically silent’ anion exchange across the plasma membrane of Xenopus oocytes mediated by the band-3 protein of mouse red blood cells. Journal of Membrane Biology 1987; 99: 127–136
  • Hamasaki N., Okubo K., Kang D. Protein chemistry of the anion transport center of erythrocyte band 3. The Band 3 Proteins: Anion Transporters, Binding Proteins and Senescence Antigens, E. Bamberg, H. Passow. Elsevier, Amsterdam 1992; 65–71
  • Hoefner D. M., Blank M. E., Davis B. M., Diedrich D. F. Band 3 antagonists, p-azidobenzylphlorizin and DIDS, mediate erythrocyte shape and flexibility changes as characterized by digital image morphometry and microfiltration. Journal of Membrane Biology 1994; 141: 91–100
  • Isomaa B., Hägerstrand H., Paatero G. Shape transformations induced by amphiphiles in erythrocytes. Biochimica et Biophysica Acta 1987; 899: 93–103
  • Jennings M. L., Schulz R. K., Allen M. Effects of membrane potential on electrically silent transport. Potential-independent translocation and asymmetric potential-dependent substrate binding to the red blood cell anion exchange protein. Journal of General Physiology 1990; 96: 991–1012
  • Julien T., Zaki L. Studies on inactivation of anion transport in human red blood cell membrane by reversibly and irreversibly acting arginine-specific reagents. Journal of Membrane Biology 1988; 102: 217–224
  • Knauf P. A., Restrepo D., Liu S. J., Mendoza Raha N., Spinelli L. J., Law Y. J., Cronise B., Snyder R. B., Romanov L. Mechanisms of substrate binding, inhibitor binding, and ion translocation in band 3 and band 3-related proteins. The Band 3 Proteins: Anion Transporters, Binding Proteins and Senescence Antigens, E. Bamberg, H. Passow. Elsevier, Amsterdam 1992; 35–43
  • Knauf P. A., Strong N. M., Penikas J., Wheeler R. B., Jr, Liu S.-Q. J. Eosin-5-maleimide inhibits red cell CI− exchange at a noncompetitive site that senses band 3 conformation. American Journal of Physiology (Cell Physiology, 33) 1993; 264: C1144–C1154
  • Lange Y., Slayton J. M. Interaction of cholesterol and lysophosphatidylcholine in determining red cell shape. Journal of Lipid Research 1982; 23: 1121–1127
  • Liu S.-Q. J., Knauf P. A. Lys-430, site of irreversible inhibition of band 3 CI− flux by eosin-5-maleimide, is not at the transport site. American Journal of Physiology (Cell Physiology, 33) 1993; 264: C1154–C1164
  • Minami T., Cutler D. J. A kinetic study of the role of band 3 anion transport protein in the transport of salicylic acid and other hydrobenzoic acids across the human erythrocyte membrane. Journal of Pharmaceutical Sciences 1992; 81: 424–427
  • Nwafor A., Coakley W. T. Drug-induced shape change in erythrocytes correlates with membrane potential change and is independent of glycocalyx charge. Biochemical Pharmacology 1985; 34: 3329–3336
  • Ortwein R., Oslender-Kohnen A., Deuticke B. Band 3, the anion exchanger of the erythrocyte membrane, is also a flippase. Biochimica et Biophysica Acta 1994; 1191: 317–323
  • Othmane A., Bitbol M., Snabre P., Mills P. Influence of altered phospholipid composition of the membrane outer layer on red blood cell aggregation: relation to shape changes and glycocalyx structure. European Biophysical Journal 1990; 18: 93–99
  • Passow H. Molecular aspects of band 3 protein mediated anion transport across the red blood cell membrane. Reviews of Physiology, Biochemistry and Pharmacology 1986; 103: 62–203
  • Rand R. P., Burton A. C., Canham P. Reversible changes in shape of red cells in electrical fields. Nature 1965; 205: 977–978
  • Reinhart W. H., Lanping A. S., Schuessler G. B., Chien S. Membrane protein phosphorylation during stomatocyte-echinocyte transformation of human erythrocytes. Biochimica et Biophysica Acta 1986; 862: 1–7
  • Ried C. Sind Erythrozytenformen Bande 3 vermittelt. Humboldt-University, Berlin 1993, Masters thesis
  • Salhany J. M. Band 3 quaternary states and allosteric control of function. The Band 3 Proteins: Anion Transporters, Binding Proteins and Senescence Antigens, E. Bamberg, H. Passow. Elsevier, Amsterdam 1992; 191–205
  • Sarabia V. E., Casey J. R., Reithmeier R. A. F. Molecular characterization of the band 3 protein from southeast Asian ovalocytes. Journal of Biological Chemistry 1993; 268: 10676–10680
  • Seigneuret M., Devaux P. F. ATP-dependent asymmetric distribution of spin-labeled phospholipids in the erythrocyte membrane: relation to shape changes. Proceedings of the National Academy of Sciences, USA 1984; 81: 3751–3755
  • Sheetz M. P., Singer S. J. Biological membranes as bilayer couples. A mechanism of drug-erythrocyte interaction. Proceedings of the National Academy of Sciences, USA 1974; 72: 4457–4461
  • Svoboda K., Schmidt C. F., Branton D., Block S. Conformation and elasticity of the isolated red blood cell membrane skeleton. Biophysical Journal 1992; 63: 784–793
  • Tamura A., Fujii T. Roles of charged groups on the surface of membrane lipid bilayer of human erythrocytes in induction of shape change. Journal of Biochemistry 1981; 90: 629–634
  • Wang D. N., Kühlbrandt W., Sarabia V. E., Reithmeier R. A. F. Two-dimensional structure of the membrane domain of human band 3, the anion transport protein of the erythrocyte membrane. EMBO Journal 1993; 12: 2233–2239
  • Weed R. I., Chailley B. Calcium-pH interactions in the production of shape change in erythrocytes. Red Cell Shape, M. Bessis, R. I. Weed, P. F. Leblond. Springer Verlag, New York 1993; 55–68
  • Wyatt K., Cherry R. J. Effect of membrane potential on band 3 conformation in the human erythrocyte membrane detected by triplet state quenching experiments. Biochemistry 1992; 31: 4650–4656
  • Zachowski A., Favre E., Cribier S., Herve P., Devaux F. Outside-inside translocation of aminophospholipids in the human erythrocyte is mediated by a specific enzyme. Biochemistry 1986; 25: 2585–2591
  • Zaden-Oppe A. M. M., Adragna N. C., Tosteson D. C. Effects of pH, potential, chloride and furosimide on passive Na+ and K+ effluxes from human red blood cells. Journal of Membrane Biology 1988; 103: 217–225
  • Zaki L. Anion binding site in band 3 protein. The Band 3 Proteins: Anion Transporters, Binding Proteins and Senescence Antigens, E. Bamberg, H. Passow. Elsevier, Amsterdam 1992; 59–64

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.