44
Views
29
CrossRef citations to date
0
Altmetric
Review Article

Protein transport via amino-terminal targeting sequences: common themes in diverse systems (Review)

&
Pages 295-307 | Received 27 Apr 1995, Published online: 09 Jul 2009

References

  • Abrahamsén L., Moks T., Nilsson B., Hellman U., Uhlén M. Analysis of signals for secretion in the Staphylococcal protein A gene. EMBO Journal 1985; 4: 3901–3906
  • Akita M., Sasaki S., Matsuyama S., Mizushima S. SecA interacts with secretory proteins by recognizing the positive charge at the amino terminus of the signal peptide in Escherichia coli. Journal of Biological Chemistry 1990; 265: 8164–8169
  • Allison D. S., Schatz G. Artificial mitochondrial presequences. Proceedings of the National Academy of Sciences USA 1986; 83: 9011–9015
  • Althoff S., Selinger D., Wise J. A. Molecular evolution of the SRP cycle components: functional implications. Nucleic Acids Research 1994; 22: 1933–1947
  • Anderson C. M., Gray J. Cleavage of the precursor of pea chloroplast cytochrome f by leader peptidase from Esherichia coli. FEBS Letters 1981; 280: 383–386
  • Arndt E. The genes for ribosomal protein L15 and the protein equivalent to secY in the archaebacterium Haloarcula (Halobacterium) marismortui. Biochimica et Biophysica Acta 1992; 1130: 113–116
  • Auchincloss A. H., Alexander A., Kohorn B. D. Requirement for three membrane-spanning α-helices in the post-translational insertion of a thylakoid membrane protein. Journal of Biological Chemistry 1992; 267: 10439–10446
  • Auer J., Spicker G., Böck A. Presence of a gene in the archaebacterium Methanococcus vannielii homologous to secY of eubacteria. Biochimie 1991; 73: 683–688
  • Barbrook A. C., Packer J. C. L., Howe C. J. Components of the protein translocation machinery in the thermophilic cyanobacterium Phormidium laminosum. Biochemical and Biophysical Research Communications 1993; 197: 874–877
  • Bassham D. C., Creighton A. M., Arretz M., Brunner M., Robinson C. Efficient but aberrant cleavage of mitochondrial precursor proteins by the chloroplast stromal processing peptidase. European Journal of Biochemistry 1994; 221: 523–528
  • Batenburg A. M., Demel R. A., Verkleij A. J., De Kruijff B. Penetration of the signal sequence of Escherichia coli PhoE protein into phospholipid model membranes leads to lipid-specific changes in signal peptide structure and alterations of lipid organization. Biochemistry 1988; 27: 5678–5685
  • Behrens M., Michaelis G., Pratje E. Mitochondrial inner membrane protease 1 of Saccharomyces cerevisiae shows sequence similarity to the Escherichia coli leader peptidase. Molecular and General Genetics 1991; 228: 167–176
  • Bernstein H. D., Poritz M. A., Strub K., Hoben P. J., Brenner S., Walter P. Model for signal sequence recognition from amino-acid sequence of 54K subunit of signal recognition particle. Nature 1989; 340: 482–486
  • Bernstein H. D., Zopf D., Freymann D. M., Walter P. Functional substitution of the signal recognition particle 54-kDa subunit by its Escherichia coli homolog. Proceedings of the National Academy of Sciences USA 1993; 90: 5229–5233
  • Bielefeld M., Hollenberg C. P. Bacterial β-lactamase is efficiently secreted in Saccharomyces cerevisiae under control of the invertase signal sequence. Current Genetics 1992; 21: 265–268
  • Black M. T. Evidence that the catalytic activity of prokaryote leader peptidase depends upon the operation of a serine-lysine catalytic dyad. Journal of Bacteriology 1993; 175: 4957–4961
  • Block M. A., Dome A-J., Joyard J., Douce R. Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. II. Biochemical characterization. Journal of Biological Chemistry 1983; 258: 13281–13286
  • Borchert T. V., Nagarajan V. Effect of signal sequence alteration on export of levansucrase in Bacillus subtilis. Journal of Bacteriology 1991; 173: 276–282
  • Boutry M., Nagy F., Poulsen C., Aoyagi K., Chua N. H. Targeting of bacterial chloramphenicol acetyltransferase to mitochondria in transgenic plants. Nature 1987; 328: 340–342
  • Brock I. W., Mills J. D., Robinson D., Robinson C. The δpH-driven, ATP-independent protein translocation mechanism in the chloroplast thylakoid membrane. Journal of Biological Chemistry 1995; 270: 1657–1662
  • Bruch M. D., Gierasch L. M. Comparison of helix stability in wild-type and mutant LamB signal sequences. Journal of Biological Chemistry 1990; 265: 3851–3858
  • Brundage L., Fimmel C. J., Mizushima S., Wickner W. SecY, SecE, and Band 1 form the membrane-embedded domain of E. coli preprotein translocase. Journal of Biological Chemistry 1992; 267: 4166–4170
  • Byström A. S., Hjalmarsson K. J., Wikström P. M., Björk G. R. The nucleotide sequence of an Escherichia coli operon containing genes for the tRNA (m1G)methyltransferase, the ribosomal proteins S16 and L19 and a 21-K polypeptide. EMBO Journal 1983; 2: 899–905
  • Cabelli R. J., Dolan K. M., Qian L., Oliver D. B. Characterization of membrane-associated and soluble states of SecA protein from wild-type and SecA51(TS) mutant strains of Escherichia coli. Journal of Biological Chemistry 1991; 266: 24420–24427
  • Chou M. M., Kendall D. A. Polymeric sequences reveal a functional interrelationship between hydrophobicity and length of signal peptides. Journal of Biology Chemistry 1990; 265: 2873–2880
  • Cobet W. W., Mollay C., Muller G., Zimmerman R. Export of honeybee prepromelittin in Escherichia coli depends on the membrane potential but does not depend on proteins secA and secY. Journal of Biological Chemistry 1989; 264: 10169–10176
  • Collier D. N. Escherichia coli signal peptides direct inefficient secretion of an outer membrane protein (OmpA) and periplasmic proteins (maltose-binding protein, ribose-binding protein, and alkaline phosphatase) in Bacillus subtilis. Journal of Bacteriology 1994; 176: 3013–3020
  • Dalbey R. E., Von Heijne G. Signal peptidases in prokaryotes and eukaryotes—a new protease family. Trends in Biochemical Sciences 1992; 17: 474–478
  • Daum G. Lipids of mitochondria. Biochimica et Biophysica Acta 1985; 822: 1–42
  • De Cock H., Overeem W., Tommassen J. Biogenesis of outer membrane protein PhoE of Escherichia coli. Evidence for multiple SecB-binding sites in the mature portion of the PhoE protein. Journal of Molecular Biology 1992; 224: 369–379
  • De Vrije T., Batenburg A. M., Jordi W., De Kruijff B. Inhibition of PhoE translocation across Escherichia coli inner-membrane vesicles by synthetic signal peptides suggests an important role of acidic phospholipids in protein translocation. European Journal of Biochemistry 1989; 180: 385–392
  • De Vrije T., De Swart R. L., Dowhan W., Tommassen J., De Kruijff B. Phophatidylglycerol is involved in protein translocation across Escherichia coli inner membranes. Nature 1988; 334: 173–175
  • Doud S. K., Chou M. M., Kendall D. A. Titration of protein transport activity by incremental changes in signal peptide hydrophobicity. Biochemistry 1993; 32: 1251–1256
  • Douglas S. E. A secY homologue is found in the plastid genome of Cryptomonas ø. FEBS Letters 1992; 298: 93–96
  • Douglas M. G., McCammon M. T., Vassarotti A. Targeting proteins into mitochondria. Microbiological Reviews 1986; 50: 166–178
  • Driessen A. J. M. Bacterial protein translocation: kinetic and thermodynamic role of ATP and the protonmotive force. Trends in Biochemical Sciences 1992; 17: 219–223
  • Driessen A. J. M. How proteins cross the bacterial cytoplasmic membrane. Journal of Membrane Biology 1994; 142: 145–159
  • Dubertret G., Mirshahi A., Mirshahi M., Gerard-Hirne C., Tremolieres A. Evidence from in vivo manipulations of lipid composition in mutants that the δ 3-trans-hexadecenoic acid-containing phosphatidylglycerol is involved in the biogenesis of the light-harvesting chlorophyll a/b-protein complex of Chlamydomonas reinhardtii. European Journal of Biochemistry 1994; 226: 473–482
  • Economou A., Wickner W. SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 1994; 78: 835–843
  • Eilers M., Oppliger W., Schatz G. Both ATP and an energized inner membrane are required to import a purified precursor protein into mitochondria. EMBO Journal 1987; 6: 1073–1077
  • Eisele J.-L., Rosenbusch J. In vitro folding and oligomerization of a membrane protein. Transition of bacterial porin from random coil to native conformation. Journal of Biological Chemistry 1990; 265: 10217–10220
  • Endo T., Schatz G. Latent membrane perturbation activity of a mitochondrial precursor protein is exposed by unfolding. EMBO Journal 1988; 7: 1153–1158
  • Finkelstein A. V., Bendzko P., Rapoport T. A. Recognition of signal sequences. FEBS Letters 1983; 161: 176–179
  • Franklin A. E., Hoffman N. E. Characterization of a chloroplast homologue of the 54-kDa subunit of the signal recognition particle. Journal of Biological Chemistry 1993; 268: 22175–22180
  • Gascuel O., Danchin A. Protein export in prokaryotes and eukaryotes: indications of a difference in the mechanism of exportation. Journal of Molecular Evolution 1986; 24: 130–142
  • Gavel Y., Von Heijne G. A conserved cleavage-site motif in chloroplast transit peptides. FEBS Letters 1990; 261: 455–458
  • Gillespie L. L. Identification of an outer mitochondrial membrane protein that interacts with a synthetic signal peptide. Journal of Biological Chemistry 1987; 262: 7939–7942
  • Görlich D., Prehn S., Hartmann E., Kalies K.-U., Rapoport T. A. A mammalian homolog of SEC61p and SECYp is associated with ribosomes and nascent polypeptides during translocation. Cell 1992; 71: 489–503
  • Gotschlich E. C., Fraser B. A., Nishimura O., Robbins J. B., Liu T.-Y. Lipid on capsular polysaccharides of gram negative bacteria. Journal of Biological Chemistry 1981; 256: 8915–8921
  • Hachiya N., Alam R., Sakasegawa Y., Sakaguchi M., Mihara K., Omura T. A mitochondrial import factor purified from rat liver cytosol is an ATP-dependent conformational modulator for precursor proteins. EMBO Journal 1993; 12: 1579–1586
  • Hageman J., Robinson C., Smeekens S., Weisbeek P. A thylakoid processing protease is required for complete maturation of the lumen protein plastocyanin. Nature 1986; 324: 567–569
  • Halpin C., Elderiield P. D., James H. E., Zimmermann R., Dunbar B., Robinson C. The reaction specificities of the thylakoidal processing peptidase and Escherichia coli leader peptidase are identical. EMBO Journal 1989; 8: 3917–3921
  • Hammen P. K., Gorenstein D. G., Weiner H. Structure of the signal sequences for two mitochondrial matrix proteins that are not proteolytically processed upon import. Biochemistry 1994; 33: 8610–8617
  • Hann B. C., Poritz M A., Walter P. Saccharomyces cerevisiae and Schizosaccharomyces pombe contain a homologue to the 54-kD subunit of the signal recognition particle that in S. cerevisiae is essential for growth. Journal of Cell Biology 1989; 109: 3223–3230
  • Haucke V., Lithgow T., Rospert S., Hahne K., Schatz G. The yeast mitochondrial protein import receptor Mas20p binds precursor proteins through electrostatic interaction with the positively charged presequence. Journal of Biological Chemistry 1995; 270: 5565–5570
  • Hawlitschek G., Schneider H., Schmidt B., Tropschug M., Hartl F.-U., Neupert W. Mitochondrial protein import: identification of processing peptidase and of PEP, a processing enhancing protein. Cell 1988; 53: 795–806
  • High S., Dobberstein B. The signal sequence interacts with the methionine-rich domain of the 54-kD protein of signal recognition particle. Journal of Cell Biology 1991; 113: 229–233
  • High S., Dobberstein B. The signal sequence interacts with the methionine-rich domain of the 54-kD protein of signal recognition particle. Journal of Cell Biology 1991; 113: 229–233
  • High S., Martoglio B., Gorlich D., Anderson S. S. L., Ashford A. J., Giner A., Hartmann E., Prehn S., Rapoport T. A., Dobberstein B., Brunner J. Site-specific photocross-linking reveals that Sec61p and TRAM contact different regions of a membrane-inserted signal sequence. Journal of Biological Chemistry 1993; 268: 26745–26751
  • Hirsch S., Muckel E., Heemeyer F., Von Heijne G., Soil J. A receptor component of the chloroplast protein translocation machinery. Science 1994; 266: 1989–1992
  • Honda K., Nakamura K., Nishiguchi M., Yamane K. Cloning and characterization of a Bacillus subtilis gene encoding a homolog of the 54-kilodalton subunit of mammalian signal recognition particle and Escherichia coli Ffh. Journal of Bacteriology 1993; 175: 4885–4894
  • Horniak L., Pilon M., Van'T Hof R., De Kruijff B. The secondary structure of the ferredoxin transit sequence is modulated by its interaction with negatively charged lipids. FEBS Letters 1993; 334: 241–246
  • Horst M., Hilfiker-Rothenfluh S., Oppliger W., Schatz G. Dynamic interaction of the protein translocation systems in the inner and outer membranes of yeast mitochondria. EMBO Journal 1995; 14: 2293–2297
  • Hoyt D. W., Gierasch L. M. A peptide corresponding to an export-defective mutant OmpA signal sequence with asparagine in the hydrophobic core is unable to insert into model membranes. Journal of Biological Chemistry 1991; 266: 14406–14412
  • Isaki L., Beers R., Wu H. C. Nucleotide sequence of the Pseudomonas fluorescens signal peptidase II gene (Isp) and flanking genes. Journal of Bacteriology 1990a; 172: 6512–6517
  • Isaki L., Kawakami M., Beers R., Horn R., Wu H. C. Cloning and nucleotide sequence of the Enterobacter aerogenes signal peptidase II (Isp) gene. Journal of Bacteriology 1990b; 172: 469–472
  • Izard J. W., Kendall D. A. Signal peptides: exquisitely designed transport promoters. Molecular Microbiology 1994; 13: 765–773
  • Izard J. W., Doughty M. B., Kendall D. A. The physical and conformational properties of synthetic idealized signal sequences parallel their biological function. Biochemistry 1995; 34: 9904–9912
  • Jain R. G., Rusch S. L., Kendall D. A. Signal peptide cleavage regions: functional limits on length and topological implications. Journal of Biological Chemistry 1994; 269: 16305–16310
  • Jones J. D., McKnight C. J., Gierasch L. M. Biophysical studies of signal peptides: implications for signal sequence functions and the involvement of lipid in protein export. Journal of Bioenergetics and Biomembranes 1990; 22: 213–232
  • Kalousek F., Hendrick J. P., Rosenberg L. E. Two mitochondrial matrix proteases act sequentially in the processing of mammalian matrix enzymes. Proceedings of the National Academy of Sciences USA 1988; 85: 7536–7540
  • Kamekura M., Seno U., Holmes M. L., Dyall-Smith M. L. Molecular cloning and sequencing of the gene for a halophilic alkaline serine protease (Halolysin) from an unidentified halophilic archaea strain (172P1) and expression of the gene in Haloferax volcanii. Journal of Bacteriology 1992; 174: 736–742
  • Karnik S., Doi T., Molday R., Khorana H. G. Expression of the archaebacterial bacterio-opsin gene with and without signal sequences in Escherichia coli: the expressed proteins are located in the membrane but bind retinal poorly. Proceedings of the National Academy of Sciences USA 1990; 87: 8955–8959
  • Keegstra K., Olsen L. J., Theg S. M. Chloroplastic precursors and their transport across the envelope membranes. Annual Review of Plant Physiology and Plant Molecular Biology 1989; 40: 471–501
  • Kellenberger E. The ‘Bayer bridges’ confronted with results from improved electronmicroscopy methods. Molecular Microbiology 1990; 4: 697–705
  • Kendall D. A., Bock S. C., Kaiser E. T. Idealization of the hydrophobic segment of the alkaline phosphatase signal peptide. Nature 1986; 321: 706–708
  • Kessler F., Blobel G., Patel H. A., Schnell D. J. Identification of two GTP-binding proteins in the chloroplast protein import machinery. Science 1994; 266: 1035–1039
  • Kiebler M., Keil P., Schneider H., Van Der Klei I. J., Pfanner N., Neupert W. The mitochondrial receptor complex: a central role of MOM22 in mediating preprotein transfer from receptors to the general insertion pore. Cell 1993; 74: 483–492
  • Kim Y. J., Rajapandi T., Oliver D. SecA protein is exposed to the periplasmic surface of the E. coli inner membrane in its active state. Cell 1994; 78: 845–853
  • Kleiber J., Kalousek F., Swaroop M., Rosenberg L. E. The general mitochondrial matrix processing protease from rat liver: structural characterization of the catalytic subunit. Proceedings of the National Academy of Sciences USA 1990; 87: 7978–7982
  • Klose M., Schimz K.-L, Van Der Wolk J., Driessen A. J. M., Freudl R. Lysine 106 of the putative catalytic ATP-binding site of the Bacillus subtilis SecA protein is required for functional complementation of Escherichia coli secA mutants in vivo. Journal of Biological Chemistry 1993; 268: 4504–4510
  • Knight J. S., Madueno F., Gray J. C. Import and sorting of proteins by chloroplasts. Biochemical Society Transactions 1993; 21: 31–36
  • Knott T. G., Robinson C. The SecA inhibitor, azide, reversibly blocks the translocation of a subset of proteins across the chloroplast thylakoid membrane. Journal of Biological Chemistry 1994; 269: 7843–7846
  • Kohorn B. D., Tobin E. M. A hydrophobic, carboxy-proximal region of a light-harvesting chlorophyll a/b protein is necessary for stable integration into thylakoid membranes. Plant Cell 1989; 1: 159–166
  • Komiya T., Hachiya N., Sakaguchi M., Omura T., Mihara K. Recognition of mitochondria-targeting signals by a cytosolic import stimulation factor, MSF. Journal of Biological Chemistry 1994; 269: 30893–30897
  • Krieg U. C., Walter P., Johnson A. E. Photo-crosslinking of the signal sequence of nascent preprolactin in the 54-kilodalton polypeptide of the signal recognition particle. Proceedings of the National Academy of Sciences USA 1986; 83: 8604–8608
  • Kronenberg H. M., Fennick B. J., Vasicek T. J. Transport and cleavage of bacterial pre-β-lactamase by mammalian microsomes. Journal of Cell Biology 1983; 96: 1117–1119
  • Kurzchalia T. V., Wiedmann M., Girshovich A. S., Bochkareva E. S., Bielka H., Rapoport T. A. The signal sequence of nascent preprolactin interacts with the 54K polypeptide of the signal recognition particle. Nature 1986; 320: 634–636
  • Laforet G. A., Kendall D. A. Functional limits of conformation, hydrophobicity, and steric constraints in prokaryotic signal peptide cleavage regions. Journal of Biological Chemistry 1991; 266: 1326–1334
  • Lancelin J.-M., Bally I., Arlaud G. J., Blackledge M., Gans P., Stein M., Jacquot J.-P. NMR structures of ferredoxin chloroplastic transit peptide from Chlamydomonas reinhardtii promoted by trifluoroethanol in aqueous solution. FEBS Letters 1994; 343: 261–266
  • Lechner J., Sumper M. The primary structure of a procaryotic glycoprotein. Journal of Biological Chemistry 1987; 262: 9724–9729
  • Lill R., Dowhan W., Wickner W. The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. Cell 1990; 60: 271–280
  • Luirink J., High S., Wood H., Giner A., Tollervey D., Dobberstein B. Signal-sequence recognition by an Escherichia coli ribonucleoprotein complex. Nature 1992; 359: 741–743
  • McKnight C. J., Briggs M. S., Gierasch L. M. Functional and nonfunctional LamB signal sequences can be distinguished by their biophysical properties. Journal of Biological Chemistry 1989; 264: 17293–17297
  • Mant A., Nielsen V. S., Knott T. G., Møiler B. L., Robinson C. Multiple mechanisms for the targeting of photosystem I subunits F, H, K, L., and N into and across the thylakoid membrane. Journal of Biological Chemistry 1994; 269: 27303–27309
  • Muller M. Proteolysis in protein import and export: signal peptide processing in eu- and prokaryotes. Experientia 1992; 48: 118–129
  • Muller M., Ibrahimi I., Chang C. N., Walter P., Blobel G. A bacterial secretory protein requires signal recognition particle for translocation across mammalian endoplasmic reticulum. Journal of Biological Chemistry 1982; 257: 11860–11863
  • Muren E. M., Randall L. L. Export of α-amylase by Bacillus amyloliquefaciens requires proton motive force. Journal of Bacteriology 1985; 164: 712–716
  • Müsch A., Wiedmann M., Rapoport T. A. Yeast sec proteins interact with polypeptides traversing the endoplasmic reticulum membrane. Cell 1992; 69: 343–352
  • Nagarajan V. Protein secretion. Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics, A. L. Sonenshein, J. A. Hoch, R. Losick. American Society for Microbiology, Washington, DC 1993; 713–726
  • Nakai M., Goto A., Nohara T., Sugita D., Endo T. Identification of the SecA protein homolog in pea chloroplasts and its possible involvement in thylakoidal protein transport. Journal of Biological Chemistry 1994a; 269: 31338–31341
  • Nakai M., Nohara T., Sugita D., Endo T. Identification and characterization of the Sec-A protein homologue in the cyanobacterium Synechococcus PCC7942. Biochemical and Biophysical Research Communications 1994b; 200: 844–851
  • Nakai M., Sugita D., Omata T., Endo T. Sec-Y protein is localized in both the cytoplasmic and thylakoid membranes in the cyanobacterium Synechococcus PCC7942. Biochemical and Biophysical Research Communications 1993; 193: 228–234
  • Nakamura K., Nakamura A., Takamatsu H., Yoshikawa H., Yamane K. Cloning and characterization of a Bacillus subtilis gene homologous to E. coli SecY. Journal of Biochemistry 1990; 107: 603–607
  • Nielsen J. B. K., Lampen J. O. Glyceride-cystein lipoproteins and secretion by gram-positive bacteria. Journal of Bacteriology 1982; 152: 315–322
  • Nunnari J., Fox T. D., Walter P. A mitochondrial protease with two catalytic subunits of nonoverlapping specificities. Science 1993; 262: 1997–2004
  • Oliver D. B. SecA protein: autoregulated ATPase catalysing preprotein insertion and translocation across the Escherichia coli inner membrane. Molecular Microbiology 1993; 7: 159–165
  • Oliver D. B., Cabelli R. J., Jarosik G. P. SecA protein: autoregulated initiator of secretory precursor protein translocation across the E. coli plasma membrane. Journal of Bioenergetics and Biomembranes 1990; 22: 311–336
  • O'Neil K. T., Degrado W. F. How calmodulin binds its targets: sequence independent recognition of amphiphilic α- helices. Trends in Biological Sciences 1990; 15: 59–64
  • Osborne R. S., Silhavy T. J. PrIA suppressor mutations cluster in regions corresponding to three distinct topological domains. EMBO Journal 1993; 12: 3391–3398
  • Overhoff B., Klein M., Spies M., Freudl R. Identification of a gene fragment which codes for the 364 amino-terminal amino acid residues of a SecA homologue of Bacillus subtilis: further evidence for the conservation of the protein export apparatus in gram-positive and gram-negative bacteria. Molecular and General Genetics 1991; 228: 417–423
  • Pain D., Kanwar Y. S., Blobel G. Identification of a receptor for protein import into chloroplasts and its localization to envelope contact zones. Nature 1988; 331: 232–237
  • Pfanner N., Craig E. A., Meijer M. The protein import machinery of the mitochondrial inner membrane. Trends in Biochemical Science 1994; 19: 368–372
  • Pfanner N., Rassow J., Van Der Klei I. J. A dynamic model of the mitochondrial protein import machinery. Cell 1992; 68: 999–1002
  • Phillips G. J., Silhavy T. J. The E. coli ffh gene is necessary for viability and efficient protein export. Nature 1992; 359: 744–746
  • Poritz M. A., Strub K., Walter P. Human SRP RNA and E. coli 4.5S RNA contain a highly homologous structural domain. Cell 1988; 55: 4–6
  • Pugsley A. P. The complete general secretory pathway in gram-negative bacteria. Microbiological Reviews 1993; 57: 50–108
  • Puziss J. W., Strobel S. M., Bassford P. J., Jr. Export of maltose-binding protein species with altered charge distribution surrounding the signal peptide hydrophobic core in Escherichia coli cells harboring prl suppressor mutations. Journal of Bacteriology 1992; 174: 92–101
  • Raetz C. R. H. Enzymology, genetics and regulation of membrane phospholipid synthesis in Escherichia coli. Microbiological Reviews 1978; 42: 614–659
  • Randall L. L., Hardy S. J. S., Thorn J. R. Export of protein: a biochemical view. Annual Review of Microbiology 1987; 41: 507–541
  • Rapoport T. A. Transport of proteins across the endoplasmic reticulum membrane. Science 1992; 258: 931–936
  • Ratledge C., Wilkinson S. G. Microbial Lipids. Academic Press, San Diego, CA 1988; volume 1
  • Rizo J., Blanco F. J., Kobe B. Conformational behavior of Escherichia coli OmpA signal peptides in membrane mimetic environments. Biochemistry 1993; 32: 4881–4894
  • Robinson C., Ellis R. J. Transport of proteins into chloroplasts. Partial purification of a chloroplast protease involved in the processing of imported precursor polypeptides. European Journal of Biochemistry 1984; 142: 337–342
  • Roise D., Horvath S. J., Tomich J. M., Richards J. H., Schatz G. A chemically synthesized pre-sequence of an imported mitochondrial protein can form an amphiphilic helix and perturb natural and artificial phospholipid bilayers. EMBO Journal 1986; 5: 1327–1334
  • Roise D., Theiler F., Horvath S. J., Tomich J. M., Richards J. H., Allison D. S., Schatz G. Amphiphilicity is essential for mitochondrial presequence function. EMBO Journal 1988; 7: 649–654
  • Rosenblatt M., Beaudette N. V., Fasman G. D. Conformational studies of the synthetic precursor-specific region of preproparathyroid hormone. Proceedings of the National Academy of Sciences USA 1980; 77: 3983–3987
  • Rusch S. L., Chen H., Izard J. W., Kendall D. A. Signal peptide hydrophobicity is finely tailored for function. Journal of Cellular Biochemistry 1994; 55: 209–217
  • Sadaie Y., Takamatsu H., Nakamura K., Yamane K. Sequencing reveals similarity of the wild-type div + gene of Bacillus subtilis to the Escherichia coli gene. Gene 1991; 98: 101–105
  • Sarvas M. Protein secretion in Bacilli. Current Topics in Microbiology and Immunology 1986; 125: 103–125
  • Schatz G. Signals guiding proteins to their correct locations in mitochondria. European Journal of Biochemistry 1987; 165: 1–6
  • Schatz G. The protein import machinery of mitochondria. Protein Science 1993; 2: 141–146
  • Schiebel E., Driessen A. J. M., Haitl F.-U., Wickner W. δüH+ and ATP function at different steps of the catalytic cycle of preprotein translocase. Cell 1991; 64: 927–939
  • Schnell D. J., Kessler F., Blobel G. Isolation of components of the chloroplast protein import machinery. Science 1994; 266: 1007–1012
  • Schwarz E., Neupert W. Mitochondrial protein import: mechanisms, components and energetics. Biochimica et Biophysica Acta 1994; 1187: 270–274
  • Simonen M., Palva I. Protein secretion in Bacillus species. Microbiological Reviews 1993; 57: 109–137
  • Smith H., Bron S., Van Ee J., Venema G. Construction and use of signal sequence selection vectors in Escherichia coli and Bacillus subtilis. Journal of Bacteriology 1987; 169: 3321–3328
  • Söllner T., Rassow J., Wiedmann M., Schlossmann J., Keil P., Neupert W., Pfanner N. Mapping of the protein import machinery in the mitochondrial outer membrane by crosslinking of translocation intermediates. Nature 1992; 355: 84–87
  • Stirling C. J., Rothblatt J., Hosobuchi M., Deshaies R., Schekman R. Protein translocation mutants defective in the insertion of integral membrane proteins into the endoplasmic reticulum. Molecular Biology of the Cell 1992; 3: 129–142
  • Struck J. C. R., Toschka H. Y., Specht T., Erdmann V. A. Common structural features between eukaryotic 7SL RNAs, eubacterial 4.5S RNA and scRNA and archaebacterial 7S RNA. Nucleic Acids Research 1988; 16: 7740
  • Stuart R. A., Gruhler A., Van Der Klei I., Guiard B., Koll H., Neupert W. The requirement of matrix ATP for the import of precursor proteins into the mitochondrial matrix and intermembrane space. European Journal of Biochemistry 1994; 220: 9–18
  • Suh J.-W., Boylan S. A., Thomas S. M., Dolan K. M., Oliver D. B., Price C. W. Isolation of a SecY homologue from Bacillus subtilis: evidence for a common protein export pathway in eubacteria. Molecular Microbiology 1990; 4: 305–314
  • Sumper M., Berg E., Mengele R., Strobel I. Primary structure and glycosylation of the S-layer protein of Haloferax volcanii. Journal of Bacteriology 1990; 172: 7111–7118
  • Sutcliffe I. C., Russell R. R. B. Lipoproteins of gram-positive bacteria. Journal of Bacteriology 1995; 177: 1123–1128
  • Swanson S. T., Roise D. Binding of a mitochondrial presequence to natural and artificial membranes: role of surface potential. Biochemistry 1992; 31: 5746–5751
  • Tamm L. K. Incorporation of a synthetic mitochondrial signal peptide into charged and uncharged phospholipid monolayers. Biochemistry 1986; 25: 7470–7476
  • Theg S. M., Bauerie C., Olsen L. J., Selman B. R., Keegstra K. Internal ATP is the only energy requirement for the translocation of precursor proteins across chloroplastic membranes. Journal of Biological Chemistry 1989; 264: 6730–6736
  • Tommassen J., Van Tol H., Lugtenberg B. The ultimate localization of an outer membrane protein of Escherichia coli K-12 is not determined by the signal sequence. EMBO Journal 1983; 2: 1275–1279
  • Tschantz W. R., Paetzel M., Cao G., Suciu D., Inouye M., Dalbey R. E. Characterization of a soluble, catalytically active form of Escherichia coli leader peptidase: requirement of detergent or phospholipid for optimal activity. Biochemistry 1995; 34: 3935–3941
  • Tschauder S., Driessen A. J. M., Freudl R. Cloning and molecular characterization of the secY genes from Bacillus licheniformis and Staphylococcus carnosus: comparative analysis of nine members of the SecY family. Molecular and General Genetics 1992; 235: 147–152
  • Tweten R. K., Landolo J. J. Transport and processing of Staphylococcal enterotoxin B. Journal of Bacteriology 1983; 153: 297–303
  • Valentin K. SecA is plastid-encoded in a red alga: implications for the evolution of plastid genomes and the thylakoid protein import apparatus. Molecular and General Genetics 1993; 236: 245–250
  • Van Der Wolk J., Klose M., Breukink E., Demel R. A., De Kruijff B., Freudl R., Driessen A. J. M. Characterization of a Bacillus subtilis SecA mutant protein deficient in translocation ATPase and release from the membrane. Molecular Microbiology 1993; 8: 31–42
  • Van Dijl J. M., De Jong A., Vehmaanpera J., Venema G., Bron S. Signal peptidase I of Bacillus subtilis: patterns of conserved amino acids in prokaryotic and eukaryotic type I signal peptidases. EMBO Journal 1992; 11: 2819–2828
  • Van Dijl J. M., Van Den Bergh R., Reversman T., Smith H., Bron S., Venema G. Molecular cloning of the Salmonella typhimurium lep gene in E. coli. Molecular and General Genetics 1990; 223: 233–240
  • Van'T Hof R., Demel R. A., Keegstra K., De Kruijff B. Lipid-peptide interactions between fragments of the transit peptide of ribulose-1, 5-bisphosphate carboxylase/oxygenase and chloroplast membrane lipids. FEBS Letters 1991; 291: 350–354
  • Verner K., Schatz G. Protein translocation across membranes. Science 1988; 241: 1307–1313
  • Vestweber D., Brunner J., Baker A. A 42K outer-membrane protein is a component of the yeast mitochondrial protein import site. Nature 1989; 341: 205–209
  • Von Heijne G. Patterns of amino acids near signal-sequence cleavage sites. European Journal of Biochemistry 1983; 133: 17–21
  • Von Heijne G. Signal sequences: the limits of variation. Journal of Molecular Biology 1985; 184: 99–105
  • Von Heijne G. Mitochondrial targeting sequences may form amphiphilic helices. EMBO Journal 1986; 5: 1335–1342
  • Von Heijne G. The signal peptide. Journal of Membrane Biology 1990; 115: 195–201
  • Von Heijne G., Abrahamsén L. Species-specific variation in signal peptide design: implications for protein secretion in foreign hosts. FEBS Letters 1989; 244: 439–446
  • Von Heijne G., Segrest J. P. The leader peptides from bacteriorhodopsin and halorhodopsin are potential membrane-spanning amphipathic helices. FEBS Letters 1987; 213: 238–240
  • Von Heijne G., Steppuhn J., Herrmann R. G. Domain structure of mitochondrial and chloroplast targeting peptides. European Journal of Biochemistry 1989; 180: 535–545
  • Wallace T. P., Robinson C., Howe C. J. The reaction specificities of the pea and a cyanobacterial thylakoid processing peptidase are similar but not identical. FEBS Letters 1990; 272: 141–144
  • Walter P., Blobel G. Purification of a membrane-associated protein complex required for protein translocation across the endoplasmic reticulum. Proceedings of the National Academy of Sciences USA 1980; 77: 7112–7116
  • Walter P., Blobel G. Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum. Nature 1982; 299: 691–698
  • Watson M. E. E. Compilation of published signal sequences. Nucleic Acids Research 1984; 12: 5145–5164
  • Watts C., Wickner W., Zimmerman R. M13 procoat and a pre-immunoglobulin share processing specificity but use different membrane receptor mechanisms. Proceedings of the National Academy of Sciences USA 1983; 80: 2809–2813
  • Wickner W., Driessen A. J. M., Hartl F.-U. The enzymology of protein translocation across the Escherichia coli plasma membrane. Annual Review of Biochemistry 1991; 60: 101–124
  • Yang M., Jensen R. E., Yaffee M. P., Oppliger W., Schatz G. Import of proteins into yeast mitochondria: the purified matrix processing protease contains two subunits which are encoded by the nuclear MAS1 and MAS2 genes. EMBO Journal 1988; 7: 3857–3862
  • Yu F., Inouye S., Inouye M. Lipoprotein-28, a cytoplasmic membrane lipoprotein from Escherichia coli. Journal of Biological Chemistry 1986; 261: 2284–2288
  • Yuan J., Henry R., McCaffery M., Cline K. SecA homolog in protein transport within chloroplasts: evidence of endosymbiont-derived sorting. Science 1994; 266: 796–798
  • Zhao X. J., Wu H. C. Nucleotide sequence of Staphyloccocus aureus signal peptidase II (Isp) gene. FEBS Letters 1992; 299: 80–84
  • Zopf D., Bernstein H. D., Johnson A. E., Walter P. The methionine-rich domain of the 54 kD protein subunit of the signal recognition particle contains an RNA binding site and can be crosslinked to a signal sequence. EMBO Journal 1990; 9: 4511–4517

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.