6
Views
6
CrossRef citations to date
0
Altmetric
Original Article

Agonist-induced displacement of quinacrine from its binding site on the nicotinic acetylcholine receptor: plausible agonist membrane partitioning mechanism

Pages 339-347 | Received 15 May 1995, Published online: 09 Jul 2009

References

  • Adams P. R. Voltage jump analysis of procaine action at frog endplate. Journal of Physiology 1977; 268: 291–318
  • Adams P. R., Feltz A. Quinacrine (mepacrine) action at frog endplate. Journal of Physiology 1980a; 306: 261–281
  • Adams P. R., Feltz A. Endplate channel opening and the kinetics of quinacrine blocks. Journal of Physiology 1980b; 306: 283–306
  • Adams P. R., Sakmann B. Decamethonium both opens and blocks endplate channels. Proceedings of the National Academy of Sciences, USA 1978; 75: 2994–2998
  • Arias H. R. Luminal and non-luminal non-competitive inhibitor binding sites on the nicotinic acetylcholine receptor. Molecular Membrane Biology 1996; 13
  • Arias H. R., Johnson D. A. Differential agonist-induced displacement of quinacrine and ethidium from their respective histrionicotoxin-sensitive binding sites on the Torpedo acetylcholine receptor. Biochemistry 1995; 34: 1589–1595
  • Arias H. R., Sankaram M. B., Horvath L. I., Barrantes F. J., Marsh D. High affinity of negatively charged phospholipids but not gangliosides to the lipid-protein interface of the muscle-type nicotinic acetylcholine receptor. Effect of local anaesthetics. Biochemistry 1996, in press
  • Arias H. R., Valenzuela C. F., Johnson D. A. Transverse localization of the quinacrine binding site on the Torpedo acetylcholine receptor. Journal of Biological Chemistry 1993a; 268: 6348–6355
  • Arias H. R., Valenzuela C. F., Johnson D. A. Quinacrine and ethidium bind to different loci on the Torpedo acetylcholine receptor. Biochemistry 1993b; 32: 6237–6242
  • Behling R. W., Jelinski L. W. Importance of the membrane in ligand-receptor interactions. Biochemical Pharmacology 1990; 40: 49–54
  • Behling R. W., Yamane T., Navon G., Jelinski L. W. Conformation of acetylcholine bound to the nicotinic acetylcholine receptor. Proceedings of the National Academy of Sciences, USA 1988a; 85: 6721–6725
  • Behling R. W., Yamane T., Navon G., Sammon M. J., Jelinski L. W. Measuring relative acetylcholine receptor agonist binding by selective proton nuclear magnetic resonance relaxation experiments. Biophysical Journal 1988b; 53: 947–995
  • Butler D. H., McNamee M. G. FTIR analysis of nicotinic acetylcholine receptor secondary structure in reconstituted membranes. Biochimica et Biophysica Acta 1993; 1150: 17–24
  • Carter A. A., Oswald R. E. Channel blocking properties of a series of nicotinic cholinergic agonists. Biophysical Journal 1993; 65: 840–851
  • Charnet P., Labarca C., Leonard R. J., Vogelaar N. J., Czyzyk L., Gouin A., Davidson N., Lester H. A. An open channel blocker interacts with adjacent turns of α-helices in the nicotinic acetylcholine receptor. Neuron 1990; 2: 87–95
  • Cheng Y-C., Prusoff W. H. Relationship between the inhibition constant (Kl) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochemical Pharmacology 1973; 22: 3099–3108
  • Colquhoun D., Ogden D. C. Activation of ion channels in the frog endplate by high concentrations of acetylcholine. Journal of Physiology 1988; 395: 131–159
  • Cox R. N., Kaldany R-R. J., Dipaola M., Karlin A. Time-resolved photolabelling by quinacrine azide of a noncompetitive inhibitor site of the nicotinic acetylcholine receptor in a transient, agonist-induced state. Journal of Biological Chemistry 1985; 260: 7186–7193
  • Dipaola M., Kao P. N., Karlin A. Mapping, the α-subunit site photolabelled by the noncompetitive inhibitor [3H]quinacrine azide in the active state of the nicotinic acetylcholine receptor. Journal of Biological Chemistry 1990; 265: 11017–11029
  • Dougherty S. J., Berg J. C. Distribution equilibria in micellar solutions. Journal of Colloid and Interface Science 1974; 48: 110–121
  • Dreyer E. B., Hasan F., Cohen S. G., Cohen J. B. Reaction of [3H]meproadifen mustard with membrane-bound Torpedo acetylcholine receptor. Journal of Biological Chemistry 1986; 261: 13727–13734
  • Eldefrawi A. T., Miller R. E., Eldefrawi M. E. Binding of depolarizing drugs to the ionic channel sites of the nicotinic acetylcholine receptor. Biochemical Pharmacology 1982; 31: 1819–1822
  • Encinas M. V., Lissi E. A. Evaluation of partition constants in compartmentalised systems from fluorescence quenching data. Chemical Physics Letters 1982; 91: 55–57
  • Forman S. A., Firestone L. L., Miller K. W. Is agonist self-inhibition at the nicotinic acetylcholine receptor a nonespecific action. Biochemistry 1987; 26: 2807–2814
  • Forman S. A., Miller K. W. High acetylcholine concentrations cause rapid inactivation before fast desensitization in nicotinic acetylcholine receptors from Torpedo. Biophysical Journal 1988; 54: 149–158
  • Forman S. A., Miller K. W. Procaine rapidly inactivates acetylcholine receptors from Torpedo and competes with agonist for inhibition sites. Biochemistry 1989; 28: 1678–1685
  • Giraudat J., Dennis M., Heidmann T., Chang J. Y., Changeux J-P. Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: serine-262 of the δ subunit is labelled by [3H]chlorpromazine. Proceedings of the National Academy of Sciences, USA 1986; 83: 2719–2723
  • Giraudat J., Dennis M., Heidmann T., Haumont P-Y., Lederer F., Changeux J-P. Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: [3H]chlorpromazine labels homologous residues in the β and δ-chains. Biochemistry 1987; 26: 2410–2418
  • Giraudat J., Galzi J-L, Revah F., Changeux J-P., Haumont P-Y., Lederer F. The noncompetitive blocker [3H]chlorpromazine labels segment M2 but not segment M1 of the nicotinic acetylcholine receptor alpha-subunit. FEBS Letters 1989; 253: 190–198
  • González-Ros J. M., Llanillo M., Paraschos A., Martínez-Carrión M. Lipid environment of acetylcholine receptor from Torpedo californica. Biochemistry 1982; 21: 3467–3470
  • Green S. A., Simpson D. J., Zhou G., Ho P. S., Blough N. V. Intramolecular quenching of excited singlet states by stable nitroxyl radicals. Journal of the American Chemical Society 1990; 221: 7337–7346
  • Grünhagen H-H., Iwatsubo M., Changeux J-P. Fast kinetic studies on the interaction of cholinergic agonists with the membrane-bound acetylcholine receptor from Torpedo marmorata as revealed by quinacrine fluorescence. European Journal of Biochemistry 1977; 80: 225–242
  • Herz J. M., Atherton S. J. Steric factors limit access to the noncompetitive inhibitor site of the nicotinic acetylcholine receptor. Biophysical Journal 1992; 62: 74–76
  • Herz J. M., Johnson D. A., Taylor P. Distance between the agonist and noncompetitive inhibitor sites on the nicotinic acetylcholine receptor. Journal of Biological Chemistry 1989; 264: 12439–12448
  • Herz J. M., Kolb S. J., Erlinger T., Schmid E. Channel permeant cations compete selectively with noncompetitive inhibitors of the nicotinic acetylcholine receptor. Journal of Biological Chemistry 1991; 266: 16691–16698
  • Hucho F., Oberthür W., Lottspeich F. The ion channel of the nicotinic acetylcholine receptor is formed by the homologous helices MII of the receptor subunit. FEBS Letters 1986; 205: 137–142
  • Johnson D. A., Nuss J. M. The histrionicotoxin-sensitive ethidium binding site is located outside of the transmembrane domain of the nicotinic acetylcholine receptor. A fluorescence study. Biochemistry 1994; 33: 9070–9077
  • Johnson D. A., Yguerabide J. Solute accessibility to Nf-fluorescein isothiocyanate-lysine-23 cobra α-toxin bound to the acetylcholine receptor. A consideration of the effect of rotational diffusion and orientation constraints on fluorescence quenching. Biophysical Journal 1985; 48: 949–955
  • Karlin A. Exploration of the nicotinic acetylcholine receptor. The Harvey Lectures, Series 1991; 85: 71–107
  • Karlin A. Structure of nicotinic acetylcholine receptor. Current Opinion in Neurobiology 1993; 3: 299–309
  • Kuffler S. W., Yoshikamo D. The number transmitter molecules in a quantum: an estimate from iontophoretic application of acetylcholine at the neuromuscular synapse. Journal of Physiology 1975; 251: 465–482
  • Leonard R. J., Labarca C. G., Charnet P., Davidson N., Lester H. A. Evidence that the M2 membrane-spanning region lines the ion channel pore of the nicotinic acetylcholine receptor. Science 1988; 242: 1578–1581
  • Lester H. A. The permeation pathway of neurotransmitter-gated ion channels. Annual Review of Biophysics and Biomolecular Structure 1992; 21: 267–292
  • Lissi E., Bianconi M. L., Do Amaral A. T., De Paula E., Blanch L. E. B., Schreier S. Methods for the determination of partition coefficients based on the effect of solutes upon membrane structure. Biochimica et Biophysica Acta 1990; 1021: 46–50
  • Magleby K. L., Stevens C. F. A quantitative description of endplate currents. Journal of Physiology 1972; 223: 173–197
  • Marquardt D. W. Solution of non-linear chemical engineering models. Chemical Engineering Progress 1959; 55: 65–70
  • Marshall C. G., Ogden D., Colquhoun D. Activation of ion channels in the frog endplate by several analogues of acetylcholine. Journal of Physiology 1991; 433: 73–93
  • Matko J., Ohki K., Edidin M. Luminiscence quenching by nitroxide spin labels in aqueous solutions: studies on the mechanism of quenching. Biochemistry 1992; 31: 703–711
  • Neher E., Steinbach J. H. Local anaesthetics transiently block currents through single acetylcholine-receptor channels. Journal of Physiology 1978; 277: 153–176
  • Newman G. C., Huang C-H. Structural studies on phosphatidylcholine-cholesterol mixed vesicles. Biochemistry 1975; 14: 3363–3370
  • Niu L., Hess G. P. An acetylcholine receptor regulatory site in BC3H-1 cells: characterized by laser-pulse photolysis in the microsecond-to-millisend time region. Biochemistry 1993; 32: 3831–3835
  • Oberthür W., Mühn P., Baumann H., Lottspeich F., Wittmann-Liebold B., Hucho F. The reaction site of a noncompetitive antagonist in the δ subunit of the nicotinic acetylcholine receptor. The EMBO Journal 1986; 5: 1815–1819
  • Ochoa E. L. M., Chattopadhyay A., McNamee M. G. Desensitization of the nicotinic receptor: molecular mechanism and effect of modulators. Cellular and Molecular Neurobiology 1989; 9: 141–178
  • Ogden D. C., Colquhoun D. Ion channel block by acetylcholine, carbachol and suberyldicholine at the frog neuromuscular junction. Proceedings of the Royal Society of London B 1985; 225: 329–355
  • Pasquale E. B., Takeyasu K., Udgaonkar J. B., Cash D. J., Severski M. C., Hess G. P. Acetylcholine receptor: evidence for a regulatory binding site in investigations of suberyldicholine-induced transmembrane ion flux in Electrophorus electricus membrane vesicles. Biochemistry 1983; 22: 5967–5973
  • Pedersen S. E., Sharp S. D., Liu W-S., Cohen J. B. Structure of the non-competitive antagonist-binding site of the Torpedo nicotinic acetylcholine receptor. [3H]Meproadifen mustard reacts selectively with α-subunit Glu-262. Journal of Biological Chemistry 1992; 267: 10489–10499
  • Peper K., Bradley R. J., Dreyer F. The acetylcholine receptor at the neuromuscular junction. Physiological Reviews 1982; 62: 1271–1340
  • Raines D. E., Cafiso D. S. Potential-dependent phase partitioning of fluorescent hydrophobic ions in phospholipid vesicles. Journal of Membrane Biology 1984; 82: 241–247
  • Revah F., Galzi J. L., Giraudat J., Haumont P-Y., Lederer F., Changeux J-P. The noncompetitive blocker [3H]chlorpromazine labels three amino acids of the acetylcholine receptor δ subunit: implications for the α-helical organization of regions MII and for the structure of the ion channel. Proceedings of the National Academy of Sciences, USA 1990; 87: 4675–4679
  • Rhodes D. G., Sarmiento J. G., Herbette L. G. Kinetics of binding of membrane-active drugs to receptor sites. Molecular Pharmacology 1985; 27: 612–623
  • Shiono S., Takeyasu K., Udgaonkar J. B., Delcour A. H., Fujita N., Hess G. P. Regulatory properties of acetylcholine receptor: evidence for two different inhibitory sites, one for acetylcholine and the other for a noncompetitive inhibitor of receptor function (procaine). Biochemistry 1984; 23: 6889–6893
  • Sine S. M., Steinbach J. H. Agonists block currents through acetylcholine receptor channels. Biophysical Journal 1984; 46: 277–284
  • Takeyasu K., Shiono S., Udgaonkar J. B., Fujita N., Hess G. P. Acetylcholine receptor: characterization of the voltage-dependent regulatory (inhibitory) site for acetylcholine in membrane vesicles from Torpedo californica electroplax. Biochemistry 1986; 25: 1770–1776
  • Takeyasu K., Udgaonkar J. B., Hess G. P. Acetylcholine receptor: evidence for a voltage-dependent regulatory site for acetylcholine. Chemical kinetic measurements in membrane vesicles using a voltage clamp. Biochemistry 1983; 22: 5973–5978
  • Taylor P., Abramson S., Johnson D. A., Valenzuela C. F., Herz J. M. Distinctions in ligand binding sites on the nicotinic acetylcholine receptor. Annals of the New York Academy of Sciences 1991; 625: 568–587
  • Tonner P. H., Wood S. C., Miller K. W. Can nicotine self-inhibition account for its low efficacy at the nicotinic acetylcholine receptor from Torpedo. Molecular Pharmacology 1992; 42: 890–897
  • Valenzuela C. F., Kerr J. A., Johnson D. A. Quinacrine binds to the lipid-protein interface of the Torpedo acetylcholine receptor. Journal of Biological Chemistry 1992; 267: 8238–8244
  • Voges K-P., Jung G., Sawyer W. H. Depth-dependent fluorescent quenching of a tryptophan residue located at defined positions on a rigid 21-peptide helix in liposomes. Biochimica et Biophysica Acta 1987; 896: 64–76
  • White B. J., Cohen J. B. Agonist-induced changes in the structure of the acetylcholine receptor M2 regions revealed by photoincorporation of an uncharged nicotinic noncompetitive antagonist. Journal of Biological Chemistry 1992; 267: 15770–15783

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.