35
Views
9
CrossRef citations to date
0
Altmetric
Original Article

Protein

protein interactions in the lipid bilayer (Review)

Pages 67-79 | Received 01 Feb 1996, Published online: 09 Jul 2009

REFERENCES

  • Amigorena S., Salamero J., Davoust J., Fridman W. H., Bonnerot C. Tyrosine-containing motif that transduces cell activation signals also determines internalization and antigen presentation via type-Ill receptors for IgG. Nature 1992; 358: 337–341
  • Bargmann C. I., Weinberg R. A. Increased tyrosine kinase activity associated with the protein encoded by the activated neu oncogene. Proceedings of the National Academy of Sciences, USA 1988; 85: 5394–5398
  • Bargmann C. I., Weinberg R. A. Oncogenic activation of the neu-encoded receptor protein by point mutation and deletion. EMBO Journal 1988; 7: 2043–2052
  • Bonifacino J. S., Cosson P., Klausner R. D. Colocalized transmembrane determinants for ER degradation and subunit assembly explain the intracellular fate of TCR chains. Cell 1990; 63: 503–513
  • Bonifacino J. S., Cosson P., Shah N., Klausner R. D. Role of potentially charged transmembrane residues in targeting proteins for retention and degradation within the endoplasmicreticulum. EMBO Journal 1991; 10: 2783–2793
  • Bormann B. J., Knowles W. J., Marchesi V. T. Synthetic peptides mimic the assembly of transmembrane glycoproteins. Journal of Biological Chemistry 1989; 264: 4033–4037
  • Bottino C., Vitale M., Olcese L., Sivori S., Morelli L, Augugliaro R., Ciccone E., Moretta L., Moretta A. The human natural killer cell receptor for major histocompatibility complex class I molecules: surface modulation of p58 molecules and their linkage to CD3 z˜ chain, FcRI gamma chain and the p56(lck) kinase. European Journal of Immunology 1994; 24: 2527–2534
  • Brandt-Rauf P. W., Monaco R., Pincus M. R. Conformation of the transmembrane domain of the epidermal growth factor receptor. Journal of Protein Chemistry 1994; 13: 227–231
  • Brandt-Rauf P. W., Rackovsky S., Pincus M. R. Correlation of the structure of the transmembrane domain of the neu oncogene-encoded p185 protein with its function. Proceedings of the National Academy of Sciences, USA 1990; 87: 8660–8664
  • Chothia C., Levitt M., Richardson D. Helix to helix packing in proteins. Journal of Molecular Biology 1981; 145: 215–250
  • Chou P. Y., Fasman G. D. Empirical predictions of protein conformation. Annual Review of Biochemistry 1978; 47: 251–276
  • Cosson P., Lankford S. P., Bonifacino J. S., Klausner R. D. Membrane-protein association by potential intramembrane charge pairs. Nature 1991; 351: 414–416
  • Cowan S. W., Schirmer T., Rummel G., Steiert M., Ghosh R., Pauptit R. A., Jansonius J. N., Rosenbusch J. P. Crystal-structures explain functional-properties of two Escherichia coli porins. Nature 1992; 358: 727–733
  • Davis W., Harrison P. T., Hutchinson M. J., Allen J. M. Two distinct regions of FcRI initiate separate signaling pathways involved in endocytosis and phagocytosis. EMBO Journal 1995; 14: 432–441
  • Deisenhofer J., Epp O., Miki K., Huber R., Michel H. Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution. Nature 1985; 318: 618–624
  • DiFiore P. P., Pierce J. H., Fleming T. P., Hazan R., Ullrich A., King C. R., Schlessinger J., Aaronson S. A. Overexpression of the human EGF receptor confers an EGF-dependent transformed phenotype to NIH 3T3 cells. Cell 1987; 51: 1063–1070
  • Engleman D. M., Steitz T. A. The spontaneous insertion of proteins into and across the membrane: the helical hairpin hypothesis. Cell 1981; 23: 411–422
  • Fischbarg J., Cheung M., Li J., Iserovich P., Czegledy F., Kuang K., Garmer M. Are most transporters and channels beta barrels. Molecular and Cellular Biochemistry 1994; 140: 147–162
  • Gassmann M., Amrein K. E., Flint N. A., Schraven B., Burn P. Identification of a signaling complex involving CD2, z˜ chain and p59 (fyn) in T lymphocytes. European Journal of Immunology 1994; 24: 139–144
  • Goncalves E., Yamada K., Thatte H. S., Backer J. M., Golan D. E., Kahn C. R., Shoelson S. E. Optimizing transmembrane domain helicity accelerates insulin-receptor internalization and lateral mobility. Proceedings of the National Academy of Sciences, USA 1993; 90: 5762–5766
  • Gullick W. J., Bottomley A. C., Lofts F. J., Doak D. G., Mulvey D., Newman R., Crumpton M. J., Sternberg M. J. E., Campbell I. D. Three-dimensional structure of the transmembrane region of the protooncogenic and oncogenic forms of the neu protein. EMBO Journal 1992; 11: 43–48
  • Harrison P. T., Bjorkhaug L., Hutchinson M. J., Allen J. M. The interaction between human Fcz˜RI and the z˜-chain is mediated solely via the 21 amino-acid transmembrane domain of Fcz˜RI. Molecular Membrane Biology 1995; 12: 309–312
  • Hudziak R. M., Schlessinger J., Ullrich A. Increased expression of the putative growth-factor receptor p185her2 causes transformation and tumorigenesis of NIH-3T3 cells. Proceedings of the National Academy of Sciences, USA 1987; 84: 7159–7163
  • Indik Z. K., Hunter S., Huang M. M., Pan X. Q., Chien P., Kelly C., Levinson A. J., Kimberly R. P., Schreiber A. D. The high affinity Fcz˜ receptor (CD64) induces phagocytosis in the absence of its cytoplasmic domain: The gamma subunit of Fcz˜RIIIA imparts phagocytic function to Fcz˜RI. Experimental Hematology 1987; 22: 599–606
  • Jones D. T., Taylor W. R., Thornton J. M. A mutation data matrix for transmembrane proteins. FEBS Letters 1994; 339: 269–275
  • Klausner R. D., Lippincottschwartz J., Bonifacino J. S. The T-cell antigen receptor—insights into organelle biology. Annual Review of Cell Biology 1990; 6: 403–431
  • Kurosaki T., Gander I., Ravetch J. V. A subunit common to an IgG Fc-receptor and the T-cell receptor mediates assembly through different interactions. Proceedings of the National Academy of Sciences, USA 1991; 88: 3837–3841
  • Landolt-Marticorena C., Williams K. A., Deber C. M., Reithmeier R. A. F. Nonrandom distribution of amino acids in the transmembrane segments of human type I single span membrane-proteins. Journal of Molecular Biology 1993; 229: 602–608
  • Lankford S. P., Cosson P., Bonifacino J. S., Klausner R. D. Transmembrane domain length affects charge-mediated retention and degradation of proteins within the endoplasmic reticulum. Journal of Biological Chemistry 1993; 268: 4814–4820
  • Lee G. F., Hazelbauer G. L. Quantitative approaches to utilizing mutational analysis and disulfide cross-linking for modeling a transmembrane domain. Protein Science 1995; 4: 1100–1107
  • Lee G. F., Burrows G. G., Lebert M. R., Dutton D. P., Hazelbauer G. L. Deducing the organization of a transmembrane domain by disulfide cross-linking—the bacterial chemoreceptor Trg. Journal of Biological Chemistry 1994; 269: 29920–29927
  • Lee G. F., Lebert M. R., Lilly A. A., Hazelbauer G. L. Transmembrane signaling characterized in bacterial chemoreceptors by using sulfhydryl cross-linking in vivo. Proceedings of the National Academy of Sciences, USA 1995; 92: 3391–3395
  • Lemmon M. A., Engelman D. M. Specificity and promiscuity in membrane helix interactions. Quarterly Reviews of Biophysics 1994; 27: 157–218
  • Lemmon M. A., Flanagan J. M., Hunt J. F., Adair B. D., Bormann B. J., Dempsey C. E., Engelman D. M. Glycophorin A dimerization is driven by specific interactions between transmembrane -helices. Journal of Biological Chemistry 1992; 267: 7683–7689
  • Lemmon M. A., Flanagan J. M., Treutlein H. R., Zhang J., Engelman D. M. Sequence specificity in the dimerization of transmembrane -helices. Biochemistry 1992; 31: 12719–12725
  • Lemmon M. A., Treutlein H. R., Adams P. D., Brunger A. T., Engelman D. M. A dimerization motif for transmembrane -helices. Nature Structural Biology 1994; 1: 157–163
  • Lofts F. J., Hurst H. C., Sternberg M. J. E., Gullick W. J. Specific short transmembrane sequences can inhibit transformation by the mutant neu growth factor receptor in vitro and in vivo. Oncogene 1993; 8: 2813–2820
  • Maliszewski C. R., March C. J., Schoenborn M A., Gimpel S., Li S. Expression cloning of a human Fc receptor for IgA. Journal of Experimental Medicine 1990; 172: 1665–1672
  • Manolios N., Bonifacino J. S., Klausner R. D. Transmembrane helical interactions and the assembly of the T cell receptor complex. Science 1990; 249: 274–277
  • Manolios N., Letourneur F., Bonifacino J. S., Klausner R. D. Pairwise, cooperative and inhibitory interactions describe the assembly and probable structure of the T cell antigen receptor. EMBO Journal 1991; 10: 1643–1651
  • McDermott G., Prince S. M., Freer A. A., Hawthornthwaite-Lawless A. M., Papiz M. Z., Cogdell R. J., Isaacs N. W. Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 1995; 374: 517–521
  • Mitaku S., Suzuki K., Odashima S., Ikuta K., Suwa M., Kukita F., Ishikawa M., Itoh H. Interaction stabilizing tertiary structure of bacteriorhodopsin studied by denaturation experiments. Proteins 1995; 22: 350–362
  • Morton H. C., van den Herik-Oudijk I. E., Vossebeld P., Snijders A., Verhoeven A. J., Capel P. J. A., van de Winkel J. G. J. Functional association between the human myeloid immunoglobulin A Fc receptor (CD89) and FcR gamma chain. Molecular basis for CD89/FcR gamma chain association. Journal of Biological Chemistry 1995; 270: 29781–29787
  • Nagarajan S., Chesla S., Cobern L., Anderson P., Zhu C., Selvaraj P. Ligand binding and phagocytosis by CD16 (Fc gamma receptor III) isoforms. Phagocytic signaling by associated zeta and gamma subunits in Chinese hamster ovary cells. Journal of Biological Chemistry 1995; 270: 25762–25770
  • Orloff D. G., Ra C., Frank S. J., Klausner R. D., Kinet J. P. Family of disulfide-linked dimers containing the γ-chain and eta-chain of the T cell receptor and the γ-chain of Fc-receptors. Nature 1990; 347: 189–191
  • Pakula A. A., Simon M. I. Determination of transmembrane protein-structure by disulfide cross-linking: the Escherichia coli Tar receptor. Proceedings of the National Academy of Sciences, USA 1992; 89: 4144–4148
  • Pfefferkorn L. C., Yeaman G. R. Association of IgA Fc receptors (FcR) with FcRI γ subunits in U937 cells: aggregation induces the tyrosine phosphorylation of γ2. Journal of Immunology 1994; 153: 3228–3236
  • Popot J. L., Engelman D. M. Membrane-protein folding and oligomerization: the two-stage model. Biochemistry 1990; 29: 4031–4037
  • Rashin A. A., lofin M., Honig B. H. Internal cavities and buried waters in globular proteins. Biochemistry 1986; 25: 3619–3625
  • Rutledge T., Cosson P., Manolios N., Bonifacino J. S., Klausner R. D. Transmembrane helical interactions: z˜-chain dimerization and functional association with the T cell antigen receptor. EMBO Journal 1992; 11: 3245–3254
  • Salmerón A., Borroto A., Fresno M., Crumpton M. J., Ley S. C., Alarcon B. Transferrin receptor induces tyrosine phosphorylation in T cells and is physically associated with the TCRz˜-chain. Journal of Immunology 1995; 154: 1675–1683
  • Scholl P. R., Geha R. S. Physical association between the high-affinity IgG receptor (FcγRI) and the gamma-subunit of the high-affinity IgE receptor (FcRIγ). Proceedings of the National Academy of Sciences, USA 1993; 90: 8847–8850
  • Singer S. J. The molecular organisation of membranes. Structure and Function of Biological Membranes, L. I. Rothfield. Academic Press, New York 1971; 145–222
  • Singer S. J. The structure and insertion of integral proteins in membranes. Annual Review of Cell Biology 1990; 6: 247–296
  • Smith S. O., Smith C. S., Bormann B. J. Strong hydrogen bonding interactions involving a buried glutamic acid in the transmembrane sequence of the neu/erbB-2 receptor. Nature Structural Biology 1996; 3: 252–258
  • Sternberg M. J. E., Gullick W. J. Neu receptor dimerization. Nature 1989; 339: 587
  • Sternberg M. J. E., Gullick W. J. A sequence motif in the transmembrane region of growth factor receptors with tyrosine kinase activity mediates dimerization. Protein Engineering 1990; 3: 245–248
  • Suwa M., Hirokawa T., Mitaku S. A continuum theory for the prediction of lateral and rotational positioning of -helices in membrane proteins: bacteriorhodopsin. Proteins: Structure, Function and Genetics 1995; 22: 363–377
  • Tan L., Turner J., Weiss A. Regions of the T cell receptor -chains and β-chains that are responsible for interactions with CD3. Journal of Experimental Medicine 1991; 173: 1247–1256
  • Treutlein H. R., Lemmon M. A., Engelman D. M., Brunger A. T. The Glycophorin A transmembrane domain dimer: sequence-specific propensity for a right-handed supercoil of helices. Biochemistry 1992; 31: 12726–12733
  • Unwin N. Neurotransmitter action—opening of ligand-gated ion channels. Cell 1993; 72: 31–41
  • von Heijne G. Membrane proteins: from sequence to structure. Annual Review of Biophysics and Biomolecular Structure 1994; 23: 167–192
  • Wagtmann N., Biassoni R., Cantoni C., Verdiani S., Malnati M. S., Vitale M., Bottino C., Moretta L., Moretta A., Long E. O. Molecular clones of the p58 NK cell receptor reveal immunoglobulin-related molecules with diversity in both the extra- and intracellular domains. Immunity 1995; 2: 439–449
  • Wang J., Pullman A. Do helices in membranes prefer to form bundles or stay dispersed in the lipid phase. Biochimica et Biophysica Acta 1991; 1070: 493–496
  • Weinberg R. A. There are two large questions. FASEB Journal 1991; 5: 78
  • Weiner D. B., Liu J., Cohen J. A., Williams W. V., Green M. I. A point mutation in the neu oncogene mimics ligand induction of receptor aggregation. Nature 1989; 339: 230–231
  • Weissman A. M., Frank S. J., Orloff D. G., Mercep M., Ashwell J. D., Klausner R. D. Role of the z˜-chain in the expression of the T cell antigen receptor: genetic reconstitution studies. EMBO Journal 1989; 8: 3651–3656
  • Whitley P., Nilsson L., von Heijne G. Three-dimensional model for the membrane domain of Escherichia coli leader peptidase based on disulfide mapping. Biochemistry 1993; 32: 8534–8539
  • Zhang G. P., Young J. R., Tregaskes C. A., Sopp P., Howard C. J. Identification of a novel class of mammalian Fc-gamma receptor. Journal of Immunology 1995; 155: 1534–1541

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.