7
Views
6
CrossRef citations to date
0
Altmetric
Original Article

The action of carboxyl modifying reagents on the ryanodine receptor/Ca2+ release channel of skeletal muscle sarcoplasmic reticulum

&
Pages 85-93 | Received 29 Jun 1995, Accepted 10 Feb 1996, Published online: 09 Jul 2009

REFERENCES

  • Ebashi S. Exitation-contraction coupling and the mechanism of muscle contraction. Annual Review of Physiology 1991; 53: 1–16
  • Martonosi A. N. Mechanisms of Ca2 release from sarcoplasmic reticulum of skeletal muscle. Physiology Review 1984; 64: 1240–1319
  • Coronado R., Morrissette J., Sukhareva M., Vaughan D. M. Structure and function of ryanodine receptors. American Journal of Physiology 1994; 266: C1485–C1504
  • Fleischer S., Inui M. Biochemistry and biophysics of excitation-contraction coupling. Annual Review of Biophysics and Biophysical Chemistry 1989; 18: 333–364
  • Lai F. A., Meissner G. The muscle ryanodine receptor and its intrinsic calcium channel activity. Journal of Bioenergetics and Biomembranes 1989; 21: 227–245
  • Inui M., Saito A., Fleischer S. Isolation of the ryanodine receptor from cardiac sarcoplasmic reticulum and identity with the feet structures. Journal of Biological Chemistry 1987; 262: 15637–15642
  • Lai F. A., Erickson H. P., Rousseau E., Liu Q Y., Meissner G. Purification and reconstitution of the calcium release channel from skeletal muscle. Nature (London) 1988; 331: 315–319
  • Pessah I. N., Waterhouse A. L., Casida J. R. The calcium ryanodine receptor complex of skeletal and cardiac muscle. Biochemical and Biophysical Research Communications 1985; 128: 449–456
  • Michalak M., Dupraz P., Shoshan-Barmatz V. Ryanodine binding to sarcoplasmic reticulum membranes: comparison between cardiac and skeletal muscle. Biochimica et Biophysica Acta 1988; 939: 587–594
  • Meissner G. Adenine nucleotide stimulation of Ca2+ -induced Ca2+ release in sarcoplasmic reticulum. Journal of Biological Chemistry 1984; 259: 2365–2371
  • Ma J. J., Fill M., Knudson M., Campbell K. P., Coronado R. Ryanodine receptor of skeletal muscle is a gap junction-type channel. Science 1988; 242: 99–102
  • Takeshima H., Nishimura S., Matsumoto T., Ishida H., Kangawa K., Minamino N., Matsuo H., Ueda M., Hanaoka M., Hirose T., Numa S. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature (London) 1989; 339: 439–445
  • Chen S. R. W., Zhang L., MacLennan D. H. Characterization of a Ca2+ binding site in the Ca2+ release channel (ryanodine receptor) of rabbit skeletal muscle sarcoplasmic reticulum. Journal of Biological Chemistry 1992; 267: 23318–23326
  • Zorzato E., Fujii J., Otsu K., Green N. M., Lai F. A., Meissner G., MacLennan D. H. Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. Journal of Biological Chemistry 1990; 265: 2244–2256
  • Hadad N., Abramson J. J., Zable T., Shoshan-Barmatz V. Ca2+ binding sites of the ryanodine receptor/Ca2+ release channel of sarcoplasmic reticulum: low affinity binding site as probed by Terbium fluorescence. Journal of Biological Chemistry 1994; 269: 24864–24869
  • Carryway K. L., Koshland D. E., Jr. Carbodiimide modification of proteins. Methods in Enzymology 1972; 25: 616–623
  • Solioz M. Dicyclohexylcarbodiimide as a probe for proton translocating enzymes. Trends in Biochemical Science 1984; 7: 309–312
  • Argaman A., Shoshan-Barmatz V. DCCD interaction with sarcoplasmic reticulum: inhibition of Ca2+ efflux. Journal of Biological Chemistry 1988; 263: 6315–6321
  • Shoshan V., MacLennan D. H., Wood D. D. A proton gradient controls a Ca2+ release channel in sarcoplasmic reticulum. Proceedings of the National Academy of Sciences, USA 1981; 78: 4828–4832
  • Yamamoto N., Kasai M. Characterization of the Ca2+ -gated cation channel in sarcoplasmic reticulum vesicles. Journal of Biochemistry (Tokyo) 1982; 92: 456–475
  • Yamamoto N., Kasai M. Mechanism and function of the Ca2+ -gated cation channel in sarcoplasmic retriculum vesicles. Journal of Biochemistry (Tokyo) 1982; 92: 485–496
  • Scofans H. M., Barrabin H., Lewis D., Inesi G. Specific dicyclohexylcarbodiimide inhibition of the E-P + H2O = E + Pi reaction and ATP = Pi exchange in sarcoplasmic reticulum adenosinetriphosphatase. Biochemistry 1985; 24: 1025–1029
  • Martinez-Azorin F., Gomez-Fernandez J. C., Fernandez-Belda F. Limited carbodiimide derivatization modifies some functional properties of the sarcoplasmic reticulum Ca2+ release channel. Biochemistry 1993; 32: 8553–8559
  • Shoshan-Barmatz V., Weil S. Diethylpyrocarbonate modification of ryanodine receptor from skeletal muscle sarcoplasmic retiulum. Biochemical Journal 1994; 299: 177–181
  • Herz S. M., Packer L. Structural involvment of carboxyl residues in the photocycle of bacteriorhodopsin. FEBS Letters 1981; 131: 158–164
  • Meissner G. Ryanodine activation and inhibition of the Ca2+ release channel of sarcoplasmic reticulum. Journal of Biological Chemistry 1986; 261: 6300–6306
  • Tu Q., Velez P., Cortes-Gurierrez M., Fill M. Surface charge potentiates conduction through the cardiac ryanodine receptor channel. Journal of General Physiology 1994; 103: 853–867
  • Pick U., Racker E. Inhibition of the (Ca2+) ATPase from sarcoplasmic reticulum by dicyclohexylcarbodiimide: evidence for location of the Ca2+ binding site in a hydrophobic region. Biochemistry 1979; 18: 103–113
  • de Ancos J. G., Inesi G. Patterns of proteolytic cleavage and carbodiimide derivatization in sarcoplasmic reticulum adenosinetriphosphatase. Biochemistry 1988; 27: 1793–1803
  • Leberer E., Timms B. G., Campbell K. P., MacLennan D. H. Purification, calcium binding properties, and ultrastructural localization of the 53,000- and 160,000 (sarcalumenin)-Dalton glycoproteins of the sarcoplasmic reticulum. Journal of Biological Chemistry 1990; 265: 10118–10124
  • Diaz-Munoz M., Hamilton S. L., Kaetzel M. A., Hazarika P., Dealman J. R. Modulation of Ca2+ release channel activity from sarcoplasmic reticulum by annexin VI (67-kDa calcinedin). Journal of Biological Chemistry 1990; 265: 15894–15899
  • Kim K. C., Caswell A. H., Talvenheimo J. A., Brandt N. R. Isolation of a terminal cisterna protein which may link the dihydropyridine receptor to the junctional foot protein in skeletal muscle. Biochemistry 1990; 29: 9281–9292
  • Franzini-Armstrong C., Kenney L. J., Varriano-Marston E. The structure of calsequestrin in triads of vertebrate skeletal muscle: a deep-etch study. Journal of Cell Biology 1987; 105: 49–56
  • Collins J. H., Tarcsafalvi A., Ikemoto N. Identification of a region of calsequestrin that binds to the junctional face membrane of sarcoplasmic reticulum. Biochemical Biophysical Research Communication 1990; 167: 189–193
  • Kawasaki T., Kasai M. Regulation of calcium channel in sarcoplasmic reticulum by calsequestrin. Biochemical Biophysical Research Communication 1994; 199: 1120–1127
  • Shoshan-Barmatz V., Orr I., Weil S., Meyer H., Varsanyi M., Heilmeyer L. M. G. The identification of 160/150 kDa proteins and their association with the ryanodine receptor/Ca2+ channel of sarcoplasmic reticulum. Biochem. Biophys. Acta 1995, (submitted)
  • Saito A., Seiler S., Chu A., Fleischer S. Preparation and morphology of sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle. Journal of Cell Biology 1984; 99: 875–885
  • MacLennan D. H. Purification and properties of an adenosine triphosphatase from sarcoplasmic reticulum. Journal of Biological Chemistry 1970; 245: 4508–4518
  • Lowry O. H., Rosenbrough N. J., Farr A. L., Randall R. J. Protein measurements with folin phenol reagent. Journal of Biological Chemistry 1951; 193: 265–275
  • Shoshan-Barmatz V., Zarka A. A simple, fast, one-step method for the purification of the skeletal muscle ryanodine receptor. Biochemical Journal 1992; 285: 61–64
  • Kaplan R. S., Pedersen F. L. Determination of microgram quantities of protein in the presence of milligram levels of lipid with amido black 10B. Analytic Biochemistry 1985; 150: 95–104
  • Fabiato A. Computer programs for calculating total from specific free or free from specific total ionic concentrations in aqueous solutions containing multiple metals and ligands. Methods in Enzymology 1988; 157: 378–417

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.