37
Views
28
CrossRef citations to date
0
Altmetric
Original Article

Molecular components and biochemistry of electron transport in plant plasma membranes (Review)

&
Pages 127-142 | Received 27 Mar 1996, Published online: 09 Jul 2009

REFERENCES

  • Ahmad M., Cashmore A. R. HY4 gene of A. thaliana encodes a protein with characteristics of a blue light photoreceptor. Nature 1993; 366: 162–166
  • Allen J. F., Alexciev K., Hakansson G. Regulation by redox signaling. Current Biology 1995; 3: 869–872
  • Anderson A. J., Rogers K., Tepper C. S., Blee K., Cardon J. Timing of molecular events following elicitor treatment of plant cells. Physiological and Molecular Plant Pathology 1991; 38: 1–13
  • Anraku Y. Bacterial electron transport chains. Annual Reviews in Biochemistry 1988; 57: 101–132
  • Arrigoni O. Ascorbate system in plant development. Journal of Bioenergetics and Biomembranes 1994; 26: 407–419
  • Arrigoni O., Dipierro S., Borraccino G. Ascorbate freeradical redical reductase, a key enzyme of the ascorbic acid system. FEBS Letters 1981; 125: 242–245
  • Asard H., Caubergs R. LIAC activity in higher plants. In Biophysics of Photoreceptors and Photomovement in Microorganisms, F. Lenci, F. Ghetti, G. Colombetti, D. P. Häder, P. S. Song. NATO ASI Series 211, 1990; 181–189
  • Asard H., Caubergs R., Renders D., DeGreef J. A. Duroquinone stimulated NADH oxidase and b-type cytochromes in the plasma membrane of cauliflower and mung beans. Plant Science 1987; 53: 109–119
  • Asard H., Venken M., Caubergs R., Reijnders W., Oltmann F. L., DeGreef J. A. b-type cytochromes in higher plant plasma membranes. Plant Physiology 1989; 90: 1077–1083
  • Asard H., Horemans N., Caubergs R. J. Transmembrane electron transport in ascorbate-Ioaded plasma membrane vesicles from higher plants involved a b-type cytochrome. FEBS Letters 1992; 306: 143–146
  • Asard H., Horemans N., Mertens J., Caubergs R. J. The plant plasma membrane b-type cytochrome: an overview. Belgian Journal of Botany 1994; 127: 171–183
  • Asard H., Horemans N., Briggs W. R., Caubergs R. J. Blue light perception by endogenous redox components of the plant plasma membrane. Photochemistry and Photobiology 1995; 61: 518–522
  • Asard H., Horemans N., Caubergs R. J. Involvement of ascorbic acid and a b-type cytochrome in plant plasma membrane redox reactions. Protoplasma 1995; 184: 36–41
  • Askerlund P., Larsson C. Transmembrane electron transport in plasma membrane vesicles loaded with an NADH-generating system or ascorbate. Plant Physiology 1991; 96: 1178–1184
  • Askerlund P., Larsson C., Widell S., Møller I. M. NAD(P)H oxidase and peroxidase activities in purified plasma membranes from cauliflower inflorescences. Physiologia Plantarum 1987; 71: 9–19
  • Askerlund P., Larsson C., Widell S. Localization of donor and acceptor sites of NADH dehydrogenase activities using insideout and right-side-out plasma membrane vesicles from plants. FEBS Letters 1988; 239: 23–28
  • Askerlund P., Larsson C., Widell S. Cytochromes of plant plasma membranes. Characterization by absorbance difference spectrometry and redox titration. Physiologia Plantarum 1989; 76: 123–134
  • Askerlund P., Laurent P., Nakagawa H., Kader J. C. NADH-ferricyanide reductase of leaf plasma membranes. Plant Physiology 1991; 95: 6–13
  • Avery'anoff A. A. Superoxide radical generation by intact pea plants. Soviet Plant Physiology 1985; 32: 202–206
  • Awad F., Römheld V., Marschner H. Effect of root exudates on mobilization in the rhizosphere and uptake of iron by wheat plants. Plant and Soil 1994; 165: 213–218
  • Bagnaresi P., Pupillo P. Characterization of NADH-dependent Fe3 -chelate reductase of maize roots. Journal of Experimental Botany 1995; 46: 1497–1503
  • Bagnaresi P., Basso B., Pupillo P. Characterization of NADH ferric-chelate reductases of maize roots. International Conference of Bioiron (ICBI). Asheville, North Carolina 16–21 April, 1995; 79
  • Barr R. The effect of inhibitors of plasma membrane redox reactions on proton excretion by plant cells. Physiologia Plantarum 1988; 73: 194–199
  • Barr R., Sandelius A. S., Crane F. L., Morré D. J. Redox reactions of tonoplast and plasma membranes isolated from soybean hypocotyls by free-flow electrophoresis. Biochimica et Biophysica Acta 1986; 852: 254–261
  • Barr R., Brightman A., Morré D. J., Crane F. L. Modulation of plasma membrane electron transport reactions and associated proton excretion by vitamin K1 and related naphthoquinones. Journal of Cell Biology 1990; 111: 72a, (abstract No. 389)
  • Barr R., Pan R. S., Crane F. L., Brightman A. O., Morré D. J. Destruction of vitamin K1 of cultured carrot cells by ultraviolet radiation and its effect on plasma membrane electron transport reactions. Biochemistry International 1992; 27: 449–456
  • Barr R., Böttger M., Crane F. L. The effect of boron on plasma membrane electron transport and associated proton secretion by cultured carrot cells. Biochemistry and Molecular Biology International 1993; 31: 31–39
  • Barr R., Böttger M., Crane F. L., Morré D. J. Nitrate reductase activity of plasma membranes from cultured carrot cells. Protoplasma 1995; 184: 151–157
  • Barret M., Maxson J. M. Naphthalic anhydride induces imazethapyr metabolism and cytochrome P-450 activity in maize. Zeitschrift für Naturforschung 1991; 46c: 879–900
  • Basso B., Bagnaresi P., Bracale M., Soave C. The yellow-stripe-1 and -3 mutants of maize: nutritional and biochemical studies. Maydica 1994; 39: 97–105
  • Basu P. S., Tuli V. The binding of indol-3-acetic acid and 3-methyleneoxindole to plant macromolecules. Plant Physiology. 1972; 50: 507–509
  • Belkoura M., Ranjeva R., Marigio G. Cations stimulate proton pumping in Catharanthus roseus cells: implication of a redox system?. Plant, Cell Environment. 1986; 9: 653–656
  • Benov L. C., Antonov P. A., Ribarov S. R. Oxidative damage of the membrane lipids after electroporation. General Physiology and Biophysics 1994; 13: 85–87
  • Bérczi A., Asard H. NAD(P)H-utilizing oxidoreductases of the plasma membrane. An overview of presently purified proteins. Protoplasma 1995; 184: 140–144
  • Bérczi A., Brightman A. O. NADH-ferricyanide oxidoreductase is present on both sides of the plant plasma membrane. Plant Science 1994; 97: 47–52
  • Bérczi A., Fredlund K. M., Møller I. M. Purification and characterization of an NADH-hexacyanoferrate(Ill) reductase from spinach leaf plasma membrane. Archives of Biochemistry and Biophysics 1995; 320: 65–72
  • Berger F., Brownlee C. Photopolarization of the Fucus sp. zygote by blue light involves a plasma membrane redox chain. Plant Physiology 1994; 105: 519–527
  • Bernstein M., Dahse I. Redox reactions at the plasma membrane of plants. Vom Organismus zum Molekul. Festschrift für Eberhard Müller zum 60. Geburtstag, I. Dahse. Friedrich Schiller Universität Jena. 1992; 52–119
  • Bernstein M., Dahse I., Müller E., Petzold U. The membrane potential as indicator for transport and energetic processes of leaf cells of the aquatic plant Egeria densa. Biochemie und Physiologie der Pflanzen 1989; 185: 343–356
  • Bienfait H. F., Lüttge U. On the function of two systems that can transfer electrons across the plasma membrane. Plant Physiology and Biochemistry 1988; 26: 665–671
  • Bienfait H. F. Regulated redox processes at the plasmalemma of plant root cells and their function in iron uptake. Journal of Bioenergetics and Biomembranes 1985; 17: 73–83
  • Bolwell G. P., Butt V. S., Davies D. R., Zimmerlin A. The origin of the oxidative burst in plants. Free Radical Research. 1995; 23: 517–532
  • Böttger M., Hilgendorf F. Hormone action on transmembrane electron and H' -transport. Plant Physiology 1988; 86: 1038–1043
  • Böttger M., Lüthen H. Possible linkage between NADH oxidation and proton secretion in Zea mays L. roots. Journal of Experimental Botany 1986; 37: 666–675
  • Böttger M., Bigdon M., Soll H. Net proton transport in sunflower hypocotyls: comparative studies of inhibitors. Zeitschrift für Pflanzenphysiologie 1984; 114: 467–475
  • Böttger M., Barr R., Döring O., Crane F. L., Brightman A. O., Morré D. J. The effects of calcium and calmodulin inhibitors on NADH oxidation by isolated plasma membrane vesicles preloaded with NADH. Plant Science 1992; 87: 39–44
  • Böttger M., Morré D. J., Crane F. L. Evidence for transmembrane electron transfer coupled to proton secretion in plasma membrane vesicles loaded by electroporation. Protoplasma 1995; 184: 22–30
  • Bown A. W., Crawford L. A. Evidence that H efflux stimulated by redox activity is independent of plasma membrane ATPase activity. Physiologia Plantarum 1988; 73: 170–174
  • Boyer P. D., Krebs E. G. Control by phosphorylation. The Enzymes. Academic Press, Orlando, FL 1986; 3: 322–329, XVII
  • Brightman A. O., Barr R., Crane F. L., Morré D. J. Auxinstimulated NADH oxidase purified from plasma membrane of soybean. Plant Physiology 1988; 86: 1264–1269
  • Brivet-Chevillote P., di Rago J. P. Electron-transfer by vitamin K3 in a complex Ill-deficient mutant of S. cerevisiae and sequence of the corresponding cytochrome b mutation. FEBS Letters 1989; 255: 5–9
  • Brown J. C., Ambler J. E. Iron-stress response in tomato (Lycopersicon esculentum). 1. Sites of Fe reduction, absorption and transport. Physiologia Plantarum 1974; 31: 221–224
  • Buckhout T. J., Luster D. G. Pyridine nucleotide-dependent reductases of the plant plasma membrane. Oxidoreduction at the Plasma Membrane: Relation to Growth and Transport, F. L. Crane, D. J. Morré, H. E. Löw. CRC Press, Boston, MA 1991; 2: 61–84
  • Buckhout T. J., Bell P. F., Luster D. G., Chaney R. L. Iron-stress induced redox activity in tomato (Lycopersicum esculentum Mill.) is localized on the plasma membrane. Plant Physiology 1989; 90: 151–156
  • Cakmak I., Marschner H. Zinc-dependent changes in ESR signals, NADPH oxidase and plasma membrane permeability in cotton roots. Physiologia Plantarum 1988; 73: 182–186
  • Carrasco-Luna J., Calatayud F., Gonzáles-Darós F., delValle-Tascon S. Hexacyanoferrate (III) stimulation of elongation in coleoptile segments from Zea mays L. Protoplasma 1995; 184: 63–71
  • Caubergs R. J., Widell S., Larsson C., DeGreef J. A. Comparison of two methods for the preparation of a membrane fraction of cauliflower inflorescences containing a blue light reducible b-type cytochrome. Physiologia Plantarum 1983; 57: 291–295
  • Caubergs R. J., Asard H., DeGreef J. A., Leeuwerik F. J., Oltmann F. L. Light-inducible absorbance changes and vanadate-sensitive ATPase activity associated with the presumptive plasma membrane fraction from cauliflower inflorescences. Photochemistry and Photobiology 1986; 44: 641–649
  • Cavelier G. Are electron-transport and electron-transfer involved in intracellular signaling?. Medical Hypothesis 1995; 44: 261–262
  • Chen J., Wang X. C. Existence and characteristics of nitrate reductase in plasma membrane of maize roots. Science in China, Series B—Chemistry Life Sciences and Earth Sciences 1995; 38: 564–572
  • Cooper J. B., Varner J. E. Cross-linking of soluble extensin in isolated cell walls. Plant Physiology 1984; 76: 414–417
  • Córdoba F., Gonzáles-Reyes J. A. Ascorbate and plant cell growth. Journal of Bioenergetics and Biomembranes 1994; 26: 399–405
  • Corzo A., Plasa R., Ullrich W. R. Extracellular ferricyanide reduction and nitrate reductase activity in the green alga Monoraphidium braunii. Plant Science 1991; 75: 221–228
  • Craig T. A., Crane F. L. Evidence for a transplasma membrane electron transport system in plant cells. Proceedings of the Indiana Academy of Science 1981; 90: 150–155
  • Craig T. A., Crane F. L. Redox potential of the redox donor and the H? release of transplasmalemma redox system of carrot cells. Plant Physiology Supplement 1985; 77: 4
  • Cramer W. A., Furbacher N., Szczepaniak A., Tae G. S. Electron transport between photosystem II and photosystem I. Current Topics in Bioenergetics 1991; 16: 179–222
  • Crane F. L., Barr R., Craig T. A., Misra P. C. Growth control by proton pumping plasma membrane redox. Proceedings of the Plant Growth Regulation Society of America 1984; 11: 87–95
  • Crane F. L., Morré D. J., Löw H. E., Böttger M. The oxidoreductase enzyme in plant plasma membrane. Oxidoreduction at the Plasma Membrane: Relation to Growth and Transport, F. L. Crane, D. J. Morré, H. E. Löw. CRC Press, Boston, MA 1991; 2: 21–33
  • Crane F. L., Barr R., Brightman A. O., Morré D. J. Vitamin K. A potential switching point in transplasma membrane ferric reductase. Plant Iron Meeting. Logan, Utah 1991; 34
  • Crane F. L., Sun I. L., Sun E. E., Crowe R. A. Plasma membrane redox and regulation of cell growth. Protoplasma 1995; 184: 3–7
  • Crawford N. M. Nitrate: nutrient and signal for plant growth. Plant Cell 1995; 7: 859–868
  • Dancis A., Roman D. G., Anderson G. J., Hinnebusch A. G., Klaussner R. D. Ferric reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake, and transcription control by iron. Proceedings of the National Academy of Sciences, USA 1992; 89: 3869–3873
  • Doke N., Miura Y., Chai H. B., Kawakita K. Involvement of active oxygen in induction of plant defense response against infection and injury. Current Topics in Plant Physiology: An American Society of Plant Physiology Series 1991; 6: 84–96
  • Döring O., Lüthje S., Hilgendorf F., Böttger M. Membrane depolarization by hexacyanoferrate (III), hexabromoiridate (IV) and hexachloroiridate (IV). Journal of Experimental Botany 1990; 43: 1055–1061
  • Döring O., Lüthje S. Inhibition of trans-plasma membrane oxidoreductase activity and proton secretion of maize (Zea mays L.) roots by coumarins and thenoyltrifluoroacetone in vivo. International Symposium on Plant Membrane Biology. Sparta Center, Lund, Sweden 26–29 April, 1994, 1994(abstract No. P31)
  • Döring O., Lüthje S., Böttger M. Modification of the activity of the plasma membrane redox system of Zea mays L. roots by vitamin K3 and dicumarol. Journal of Experimental Botany 1992; 43: 175–181
  • Döring O., Lüthje S., Böttger M. Inhibitors of the plasma membrane redox system of Zea mays L. roots. The vitamin K antagonists dicumarol and warfarin. Biochimica et Biophysica Acta 1992; 1110: 235–238
  • Federicio R., Giartosio C. E. A trans-plasma membrane electron transport system in maize roots. Plant Physiology 1983; 29: 511–566
  • Ferrol N., Donaire J. P. Effect of boron on plasma membrane proton extrusion and redox activity in sunflower cells. Plant Science 1992; 86: 41–47
  • Fredlund K. M., Struglics A., Widell S., Askerlund P., Kader J. C., Møller I. M. Comparison of the stereospecificity and immunoreactivity of NADH-ferricyanide reductases in plant membranes. Plant Physiology 1994; 106: 1103–1106
  • Galland P., Senger H. Flavins as possible blue light photoreceptors. Photoreceptor Evolution and Function, M. G. Holmes. Academic Press, London 1991; 65–124
  • Giannini J. L., Briskin D. P. Pyridine nucleotide oxidation by a plasma membrane fraction from red beet (Beta vulgaris L.) storage tissue. Archives of Biochemistry and Biophysics 1988; 260: 653–660
  • Goldbach H. E., Hartmann D., Rotzer T. Boron is required for stimulation of ferricyanide-induced H1 -release in suspension cultured cells of Daucus carota and Lycopersicon esculentum. Physiologia Plantarum 1990; 80: 114–118
  • Goldenberg H. Plasma membrane redox activities. Biochimica et Biophysica Acta 1982; 694: 203–223
  • Gonzáles-Reyes J. A., Döring O., Navas P., Obst G., Böttger M. The effect of ascorbate free radical on the energy state of the plasma membrane of onion (Allium cepa L.) root cells: alteration of K' efflux by ascorbate?. Biochemica et Biophysica Acta 1992; 1098: 177–183
  • González-Reyes J. A., Alcain F. J., Caler J. A., Serrano A., Córdoba F., Navas P. Stimulation of root elongation by ascorbate and ascorbate free radical in Allium cepa L. Protoplasma 1995; 184: 31–35
  • Goyal S. S., Huffacker R. C. The uptake of NO3, NO2, and NH14 by intact wheat (Triticum aestivum) seedlings. 1. Induction and kinetics of transport systems. Plant Physiology 1986; 82: 1051–1056
  • Grabov A., Böttger M. Are redox reactions involved in regulation of K+ channels in the plasma membrane of Limnobium stoloniferum root hairs?. Plant Physiology 1994; 105: 927–935
  • Grabov A., Felle H., Böttger M. Modulation of the plasma membrane electron transfer system in root cells of Limnobium stoloniferum by external pH. Journal of Experimental Botany 1993; 44: 725–730
  • Grusack M. A., Welch R. M., Kochian L. V. Physiological characterization of a single-gene mutant of Pisum sativum exhibiting excess iron accumulation. Plant Physiology 1990; 93: 976–981
  • Guerinot M. L. Iron uptake in Arabidopsis thaliana. International Conference of Bioiron (ICBI) Asheville, North Carolina 16–21 April, 1995; 2
  • Guerinot M. L., Yi Y. Iron: nutrition, noxious, and not readily available. Plant Physiology 1994; 104: 815–820
  • Guerrini F., Valenti V., Pupillo P. Solubilization and purification of NAD(P)H dehydrogenase of Cucurbita microsomes. Plant Physiology 1987; 85: 828–834
  • Guerrini F., Lombini A., Bizarri M., Pupillo P. The effect of calcium chelators on microsomal pyridine nucleotide-linked dehydrogenases of sugarbeet cells. Journal of Experimental Botany 1994; 45: 1227–1233
  • Hager A., Brich M. Blue-light induced phosphorylation of a plasma-membrane protein from phototropically sensitive tips of maize coleoptiles. Planta 1993; 189: 567–576
  • Hager A., Brich M., Bazlen I. Redox dependence of the blue-light-induced phosphorylation of a 100 kDa protein on isolated plasma membranes from tips of coleoptiles. Planta 1993; 190: 120–126
  • Hassidim M., Rubinstein B., Lerner H. R., Reinhold L. Generation of a membrane potential by electron transport in plasmalemma-enriched vesicles of cotton and radish. Plant Physiology 1987; 85: 872–875
  • Hendry G. A. F., Houghton J. D., Jones D. T. G. The cytochromes in microsomal fractions of germinating mung beans. Biochemistry 1981; 194: 743–751
  • Hilgendorf F., Böttger M. Influence of temperature on proton secretion and hexacyanoferrate (III) reduction of Zea mays L. roots. Plant Physiology 1993; 101: 1349–1353
  • Hoarau J., Nasto A., Lavergne D., Flipo V., Hirel B. Nitrate reductase activity changes during a culture cycle of tobacco cells: the participation of a membrane-bound form enzyme. Plant Science 1991; 79: 193–204
  • Holden M. J., Luster D. G., Chaney R. L. Enzymatic iron reduction at the root plasma membrane: Partial purification of the NADH-Fe-chelate reductase. Biochemistry of Metal Micronutrients in the Rhizosphere, J. A. Manthey, D. E. Crowley, D. G. Luster. Lewis, Boca Raton, FL 1994; 285–294
  • Horemans N., Asard H., Caubergs R. J. The role of ascorbate free radical as an electron acceptor to cytochrome b-mediated trans-plasma membrane electron transport in higher plants. Plant Physiology 1994; 104: 1455–1458
  • Horemans N., Asard H., Caubergs R. J. Is there a carrier for vitamin C (ascorbic acid) in the plasma membrane of higher plants?. 10th International Workshop on Plant Membrane Biology. Regensburg, Germany 6–11 August, 1995, (abstract No. R26)
  • Ievinch G., Valcina A., Ozola D. Induction of ascorbate peroxidase activity in stressed pine (Pinus sylvestris L.) needles: A putative role for ethylene. Plant Science 1995; 112: 167–173
  • Ishimamura A., Yamazaki I. The carbon monoxide binding hemoprotein reducible by hydrogen peroxide in the microsomal fraction of pea seeds. Journal of Biological Chemistry 1977; 252: 199–204
  • Ivankina N. G., Novak V. A. H'-transport across the plasmalemma. H+-ATPase or redox chain?. Plant Membrane Transport, R. M. Spanswick, W. J. Lucas, J. Dainty. Elsevier, Amsterdam 1980; 503–504
  • Ivankina N. G., Novak V. A. Localization of redox reactions in plasmalemma of Elodea leaf cells. Studia Biophysica 1981; 83: 197–200
  • Ivankina N. G., Novak V. A. Transplasmalemma redox reactions and ion transport in photosynthetic and heterotrophic plant cells. Physiologia Plantarum 1988; 73: 161–164
  • Ivankina N. G., Novak V. A., Miklashevich A. I. Redox reactions and active H' -transport in the plasmalemma of Elodea leaf cells. Membrane Transport in Plants, W. J. Cram, K. Janacek, R. Rybova, S. Sigler. John Wiley & Sons, New York 1984; 404–405
  • Jacobs J. M., Jacobs N. J. Terminal enzymes of heme biosynthesis in the plant plasma membrane. Archives of Biochemistry and Biophysics 1995; 323: 274–278
  • Jesaitis A. J., Heners P. R., Hertel R., Briggs W. R. Characterization of membrane fraction containing a b-type cytochrome. Plant Physiology 1977; 59: 941–947
  • Johansson F., Olbe M., Sommarin M., Larsson C. Brij 58, a polyoxyethylene acyl ether, creates membrane vesicles of uniform sideness. A new tool to obtain inside-out (cytoplasmic side out) plasma membrane vesicles. Plant Journal 1995; 7: 165–173
  • Jones G. J., Morel F. M. M. Plasmalemma redox activity in the diatom Thalassiosira. Plant Physiology 1988; 87: 143–147
  • Kamachi K., Ameniya Y., Ogura N., Nakagawa H. Immunogold localization of nitrate reductase in spinach (Spinacea oleracea) leaves. Plant Cell Physiology 1987; 28: 333–338
  • Kauss H. Some aspects of calcium-dependent regulation in plant metabolism. Annual Review of Plant Physiology 1987; 38: 47–72
  • Kjellbom P., Larsson C., Askerlund P., Schelin C., Widell S. Cytochrome P-450/420 in plant plasma membranes: a possible component of the blue-light reducible flavoprotein-cytochrome complex. Photochemistry and Photobiology 1985; 42: 779–783
  • Klobus G., Buczek J. The role of plasma membrane oxidoreductase activity in proton transport. Journal of Plant Physiology 1995; 146: 103–107
  • Kneen B. E., LaRue T. A., Welch R. M., Weeden N. F. Pleiotropic effects of brz. A mutation in Pisum sativum (L.) cv. 'Sparkle' conditioning decreased nodulation, increased iron uptake and leaf necrosis. Plant Physiology 1990; 93: 717–722
  • Krüger S. Untersuchungen zur Energetisierung plasmalem-magebundener Redoxprozesse. PhD Thesis, University Hamburg, Germany 1993
  • Krüger S., Böttger M. NADH or NADPH?. Plasma Membrane Oxidoreductases in Control of Animal and Plant Growth, F. L. Crane, D. J. Morrè, H. Low. NATO ASI Series 183, A: Life Sciences, Plenum Press, New York 1988; 105–114
  • Kuschel L., Dahse I., Müller E. Lack of correlation between transplasmalemma electron transport rate and depolarization in Egeria densa leaf cells. Journal of Plant Physiology 1996; 147: 675–684
  • Lagendijk J., Ubbink J. B., Vermaak W. J. H. Measurement of the ratio between the reduced and oxidized forms of coenzyme Q10 in human plasma as a possible marker of oxidative stress. Journal of Lipid Research 1996; 37: 67–75
  • Laliberté J. F., Sun I. L., Crane F. L., Clarke M. J. Ruthenium ammine complexes as electron acceptor for growth stimulation by plasma membrane electron transport. Journal of Bioenergetics and Biomembranes 1987; 19: 69–81
  • Laurie S. H., Manthey J. A. The chemistry and role of metal ion chelation in plant uptake processes. Biochemistry of Metal Micronutrients in the Rhizosphere, J. A. Manthey, D. E. Crowley, D. G. Luster. Lewis, Boca Raton, FL 1994; 165–182
  • Lawrence K., Bhalla P., Misra P. C. Changes in NAD(P)H-dependent redox activities in plasmalemma-enriched vesicles isolated from boron- and zinc-deficient chick pea roots. Journal of Plant Physiology 1995; 146: 652–657
  • Leong T., Briggs W. R. Partial purification and characterization of a blue light-sensitive cytochrome-flavin complex from corn membrane. Plant Physiology 1981; 67: 1042–1046
  • Leong T., Vierstra R. D., Briggs W. R. A blue light-sensitive cytochrome-flavin complex from corn coleoptils further characterization. Photochemistry and Photobiology 1981; 34: 697–703
  • Löppert H. Energy coupling for membrane hyperpolarization in Lemna: respiration rate, ATP level and membrane potential at low oxygen concentration. Planta 1983; 159: 329–335
  • Lundegårdh H. Mechanism of absorption, transport, accumulation and secretion of ions. Annual Review of Plant Physiology 1955; 6: 1–24
  • Luster D. G., Buckhout T. J. Characterization and partial purification of multiple electron transport activities in plasma membranes from maize (Zea mays) roots. Physiologia Plantarum. 1988; 73: 339–347
  • Luster D. G., Buckhout T. J. Purification and identification of a plasma membrane associated electron transport protein from maize (Zea mays L.) roots. Plant Physiology 1989; 91: 1014–1019
  • Lüthen H., Böttger M. Hexachloroiridate IV as an electron acceptor for a plasmalemma redox system in maize roots. Plant Physiology 1988; 86: 1044–1047
  • Lüthen H., Böttger M. Induction of elongation in maize coleoptiles by hexachloroiridate and its interrelation with auxin and fusicoccin. Physiologia Plantarum 1993; 89: 77–86
  • Lüthen H., Böttger M. The role of protons in the auxin-induced root growth inhibition—a critical reexamination. Botanica Acta 1993; 106: 58–63
  • Lüthje S. Occurrence of a K-type vitamin in plasma membranes of maize (Zea mays L.) roots. 10th International Workshop on Plant Membrane Biology, RegensburgGermany, August, 6–11, 1995, (abstract No. V20)
  • Lüthje S., Böttger M. Hexabromoiridate IV as an electron acceptor: comparison with hexachloroiridate IV and hexacyanofer-rate III. Biochimica et Biophysica Acta 1989; 977: 335–340
  • Lüthje S., Böttger M. On the function of a K-type vitamin in plasma membranes of maize (Zea mays L.) roots. Mitteilungen aus dem Institut fur Allgemeine Botanik Hamburg 1995; 25: 5–13
  • Lüthje S., Döring O., Böttger M. The effects of vitamin K3 and dicumarol on the plasma membrane redox system and H1 pumping activity of Zea mays L. roots measured over a long time scale. Journal of Experimental Botany 1992; 43: 183–188
  • Lüthje S., GonzAles-Reyes J. A., Navas P., Döring O., Böttger M. Inhibition of maize (Zea mays L.) root plasma membrane-bound redox activities by coumarins. Zeitschrift Naturforschung 1994; 49c: 447–452
  • Lüthje S., Steffen D., Busch M. A., Döring O. Plasma membrane-bound redox activities: Differences between the standard system and nitrate reductase. Fourth International Symposium on Inorganic Nitrogen Assimilation and the First Fohs Biostress Symposium, Seeheim, DarmstadtGermany, 23–28 July, 1995, (abstract No. 75)
  • Lüthje S., Niecke M., Böttger M. Iron and copper in plasma membranes of maize (Zea mays L.) roots investigated by proton induced X-ray emission (PIXE). Protoplasma 1995; 184: 145–150
  • Malerba M., Crosti P., Bianchetti R. Ferricyanide induced ethylene production is a plasma-membrane proton pump dependent 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase activation. Journal of Plant Physiology 1995; 147: 182–190
  • Marco A., deJia C., Fischer-Schliebs E., Varanini Z., Lüttge U. Evidence for two different nitrate-reducing activities at the plasma membrane in roots of Zea mays L. Planta 1994; 194: 557–564
  • Marrè M. T., Moroni A., Albergoni F. G., Marre E. Plasmalemma redox activity and H1 extrusion. I. Activation of the H -pump by ferricyanide-induced potential depolarization and cytoplasm acidification. Physiologia Plantarum 1988; 87: 25–29
  • Marschner H., Römheld V. Strategies of plants for acquisition of iron. Plant and Soil 1994; 165: 261–274
  • Mehdy M. C. Active oxygen species in plant defense against pathogens. Plant Physiology 1994; 105: 467–472
  • Mehlhorn H., Lelandais M., Korth H. G., Foyer C. H. Ascorbate is the natural substrate for plant peroxidases. FEBS Letters 1996; 378: 203–206
  • Meya G., Kowallik W. Involvement of two different photo-receptors in the light regulation of glutamine synthetase activity in a chlorophyll-free Chlorella mutant. Zeitschrift Naturforschung 1994; 49c: 757–762
  • Meyerhoff P. A., Fox T. C., Travis R. L., Huffaker R. L. Characterization of the association of nitrate reductase with barley (Hordeum vulgare L.) root membranes. Plant Physiology 1994; 104: 925–936
  • Mitchell P., Moyle J. The role of ubiquinone and plasto-quinone in chemiosmotic coupling between electron transfer and proton translocation, Q Coenzyme, G. Lenaz. Wiley & Sons, Chichester 1985; 145–163
  • Miyagi N., Satho S., Fujii T. A nitrate-inducible plasma membrane protein of a marine alga, Heterosigma akashiwo. Plant Cell Physiology 1992; 33: 971–976
  • Møller I. M., Askerlund P., Widell S. Electron transport constituents in the plant plasma membrane. Oxidoreduction at the Plasma Membrane: Relation to Growth and Transport, 2, Plants, F. L. Crane, D. J. Morrè, H. E. Löw. CRC Press, Boca Raton, FL 1991; 35–59
  • Møller I. M., Fredlund K. M., Berczi A. The stereospeci-ficity, purification, and characterization of an NADH-ferricyanide reductase from spinach leaf plasma membrane. Protoplasma 1995; 184: 124–132
  • Moog P. R., Brüggemann W. Iron reductase systems on the plant plasma membrane—a review. Plant and Soil 1994; 165: 241–260
  • Morré D. J. Hormone- and growth factor-stimuiated NADH oxidase. Journal of Bioenergetics and Biomembranes 1994; 26: 421–433
  • Morré D. J., Brightman A. O. NADH oxidase of plasma membranes. Journal of Bioenergetics and Biomembranes 1991; 23: 469–489
  • Morré D. J., Navas P., Penel C., Castillo F. J. Auxin-stimulated NADH oxidase (semidehydroascorbate reductase) of soybean plasma membrane: role in acidification of cytoplasm?. Protoplasma 1986; 133: 195–197
  • Morré D. J., Brightman A. O., Wu L. Y., Barr R., Leak B., Crane F. L. Role of plasma membrane redox activities in elongation growth in plants. Physiologia Plantarum 1988; 73: 187–193
  • Morré D. J., Brightman A. O., Hidalgo A., Navas P. Selective inhibition of auxin-stimulated oxidase activity and elongation growth of soybean hypocotyls by thiol reagents. Plant Physiology 1995; 107: 1285–1291
  • Murphy T. M., Auh C. K. The superoxide synthases of plasma membrane preparations from cultured rose cells. Plant Physiology 1996; 110: 621–629
  • Navas P., Gomez-Diaz C. Ascorbate free radical and its role in growth control. Protoplasma 1995; 184: 8–13
  • Navas P., Villalba J. M., Cordoba F. Ascorbate function at the plasma membrane. Biochimica et Biophysica Acta 1994; 1197: 1–13
  • Nitsch G. Redoxvorgänge an der pflanzlichen Plasmamembran. Untersuchungen in vitro an Koleoptilen von Zea mays L. PhD thesis. University Hamburg, Germany 1994
  • Njus D., Kelley P. M. The secretory-vesicle ascorbate-regenerating system: a chain of concerted H1 /e -transfer reactions. Biochimica et Biophysica Acta 1993; 1144: 235–248
  • Novak V. A., Ivankina N. G. Nature of electrogenesis and ion transport in plant cells. Doklady Akademii Nauk SSSR 1978; 242: 1229–1232, (in Russian)
  • Novak V. A., Ivankina N. G. Light induced absorption of ions by cells of freshwater plants. Fiziologia Rastenii 1978; 25: 315–322, (English translation in Soviet Plant Physiology 25, 248–254).
  • Novak V. A., Ivankina N. G. Oxygen dependence of the membrane potential of photosynthetic plant cells. Citology 1978c; 20: 896–902, (in Russian)
  • Otter T., Polle A. The influence of apoplastic ascorbate on the activities of cell-wall associated peroxidase and NADH oxidase in needles of norway spruce (Picea abies L.). Plant and Cell Physiology 1994; 35: 1231–1238
  • Palmer J. M., Short T. W., Gallagher S., Briggs W. R. Blue light-induced phosphorylation of a plasma membrane-associated protein in Zea mays L. Plant Physiology 1993; 102: 1211–1218
  • Pattison S., Nelson M., Barr R., Crane F. L. The effect of diamide and buthionine sulfoximine on glutathione pools and transmembrane electron transport by cultured carrot cells. Proceedings of the Indiana Academy of Science, USA 1989; 97: 115–119
  • Penel C., Castillo F. J. Peroxidases of plant plasma membranes, apoplastic ascorbate, and relation of redox activities to plant pathology. Oxidoreduction at the Plasma Membrane: Relation to Growth and Transport 2, Plants, F. L. Crane, D. J Morré, H. E. JLow. CRC Press, Boca Raton, FL 1991; 121–147
  • Pinton R., Cakmak I., Marschner H. Zinc deficiency enhanced NAD(P)H dependent superoxide radical production in plasma membrane vesicles isolated from roots of bean plants. Journal of Experimental Botany 1994; 45: 45–50
  • Polevoy V. V., Salamatova T. Auxin, proton pump and cell tropics. Regulation of Membrane Activities in Plants, E. Marré, O. Ciferri. Elsevier, Amsterdam 1977; 209–216
  • Polle A., Wieser G., Havranek W. M. Quantification of ozone influx and apoplastic ascorbate content in needles of norway spruce trees (Picea abies L., KARST) at high altitude. Plant Cell and Environment 1995; 18: 681–688
  • Pönitz J., Roos W. A glucose-activated electron transfer system in the plasma membrane stimulates the H' -ATPase in. Penicillium cyclopium. Journal of Bacteriology 1994; 176: 5429–5438
  • Pupillo P., Valenti V., De Luca L., Hertel R. Kinetic characterization of reduced pyridine nucleotide dehydrogenase (duroquinone-dependent) in Cucurbita microsomes. Plant Physiology 1986; 80: 384–389
  • Qiu Q. S., Cheng P., Liang H. G. Characterization of the NAD(P)H oxidation by purified plasma membrane vesicles using a spin-trapping EPR method. Journal of Plant Physiology 1995; 146: 445–449
  • Qiu Z. S., Rubinstein B., Stern A. I. Evidence for electron transport across the plasma membrane of Zea mays root cells. Planta 1985; 165: 383–391
  • Ramirez J. R., Gallego G., Serrano R. Electron transfer constituents in plasma membrane fractions of Avena sativa and Saccharomyces cerevisiae. Plant Science Letters 1984; 34: 103–110
  • Rasmusson A. G. Effect of calcium ions and inhibitors on internal NAD(P)H dehydrogenases in plant mitochondria. European Journal of Biochemistry 1991; 202: 617–623
  • Redinbaugh M. G., Campbell W. H. Reduction of ferric citrate catalyzed by NADH: nitrate reductase. Biochemical and Biophysical Research Communications 1983; 114: 1182–1188
  • Reichart D., Salaün J. P., Benveniste I., Durst F. Time course of induction of cytochrome P-450, NADPH-cytochrome c reductase and cinnamic acid hydroxylase by phenobarbital, ethanol, herbicides, and manganese in higher plants microsomes. Plant Physiology 1980; 66: 600–604
  • Riedel J., Kunze M., Stöhr C., Tischner R. Evidence for a plasma membrane-bound nitrate reductase (PM-NR) in green tissue of higher plants. Fourth International Symposium on Inorganic Nitrogen Assimilation and the First Fohs Biostress Symposium, Seeheim, DarmstadtGermany, 23–28 July, 1995, (abstract No. 106)
  • Robertson R. N. Ion transport and respiration. Biological Reviews 1960; 35: 231–255
  • Rodriguez-Aguilera J. C., Navarro F., Arroyo A., Alcain F. J., Villalba J. M., Navas P. Vitamin C stabilization as a consequence of the plasma membrane redox system. Protoplasma 1995; 184: 229–232
  • Römheld V., Marschner H. Mechanism of iron uptake by peanut plants. I. Fe III reduction, chelate splitting, and release of phenolics. Plant Physiology 1983; 71: 949–954
  • Rubinstein B., Luster D. G. Plasma membrane redox activity: components and role in plant processes. Annual Reviews in Plant Physiology and Molecular Biology 1993; 44: 131–155
  • Rubinstein B., Stern A. I. Relationship of transplasmalemma redox activity to proton and solute transport by roots of Zea mays. Plant Physiology 1986; 80: 805–811
  • Rubinstein B., Stern A. I. Proton release and plasmalemma redox in plants. Oxidoreduction at the Plasma Membrane: Relation to Growth and Transport, 2, Plants, F. L. Crane, D. J. Morré, H. E. Löw. CRC Press, Boston, MA 1991; 167–187
  • Rubinstein B., Stern A. I. The role of plasma membrane redox activity in light effects in plants. Journal of Bioenergetics and Biomembranes 1991; 23: 393–408
  • Rubinstein B., Stern A. I., Stout R. G. Redox activity at the surface of oat root cells. Plant Physiology 1984; 76: 386–391
  • Ruyters G. Effects of blue light on enzymes. Blue Light Effects in Biological Systems, H. Senger. Springer, Berlin 1984; 283–301
  • Salguero J., Böttger M. Secreted catalase activity in roots of developing maize (Zea mays L.) seedlings. Protoplasma 1995; 184: 72–78
  • Sandelius A. S., Barr R., Crane F. L., Morré D. J. Redox reactions of plasma membranes isolated from soybean hypocotyls by phase partition. Plant Science 1986; 48: 1–10
  • Santos-Ocana C., Navas P., Crane F. L., Cordoba F. Extracellular ascorbate stabilization as a result of trans plasma membrane electron transfer in Saccharomyces cerevisiae. Journal of Bioenergetics and Biomembranes 1995; 27: 597–603
  • Schmidt W. Root-mediated ferric reduction—responses to iron deficiency, exogenously induced changes in hormonal balance and inhibition of protein synthesis. Journal of Experimental Botany 1994; 45: 725–731
  • Schmidt W., Butler W. L. Flavin mediated photoreactions in artificial systems: a possible model for the blue light photoreceptor pigment in living cells. Photochemistry and Photobiology 1976; 24: 71–75
  • Schmieden U., Wild A. Changes in levels of ã-tocopherol and ascorbate in spruce needles at three low mountain sites exposed to Mg2 -deficiency and ozone. Zeitschrift für Naturforschung 1994; 49c: 171–180
  • Schweinzer E., Mao Y., Krajnik P., Getoff N., Goldenberg H. Reduction of extracellular dehydroascorbic acid by K562 cells. Cell Biochemistry and Function 1996; 14: 27–31
  • Segal A. W. The NADPH oxidase of phagocytic cells is an electron pump that alkalinizes the phagocytic vacuole. Protoplasma 1995; 184: 86–103
  • Seidenberg S., Döring O., Krüger S., Lüthje S., Böttger M. Changes in the glutathione level induced by trans-plasma membrane electron transport in maize (Zea mays L.). Protoplasma 1995; 184: 238–248
  • Serrano A., Cordoba F., Gonzales-Reyes J. A., Navas P., Villalba J. M. Purification and characterization of two distinct NAD(P)H dehydrogenases from onion (Allium cepa L.) root plasma membrane. Plant Physiology 1994; 106: 87–96
  • Serrano A., Cordoba F., Gonzalez-Reyes J. A., Santos C., Navas P., Villalba J. M. NADH-specific dehydrogenase from onion root plasma membrane: purification and characterization. Protoplasma 1995; 184: 133–139
  • Serrano R. Structure and function of plasma membrane ATPases. Annual Reviews in Plant Physiology and Plant Molecular Biology 1989; 40: 61–94
  • Short T. W., Porst M., Briggs W. R. A photoreceptor system regulating in vivo and in vitro phosphorylation of a pea plasma membrane protein. Photochemistry and Photobiology 1992; 55: 773–781
  • Siebrecht S., Mack G., Tischner R. Function and contribution of the root tip in the induction of NO3-uptake along the barley root axis. Journal of Experimental Botany 1995; 46: 1669–1676
  • Sijmons P. C., Bienfait H. F. Source of electrons for extracellular Fe(III) reduction in iron-deficient bean roots. Physiologia Plantarum 1983; 59: 409–415
  • Sijmons P. C., Lanfermeijer F. C., DeBoer A. H., Prins H. B. A., Bienfait H. F. Depolarization of cell membrane potential during trans-plasma membrane electron transfer to extracellular electron acceptors in iron-deficient roots of Phaseolus vulgaris L. Plant Physiology 1984; 76: 943–946
  • Sijmons P. C., van denBriel W., Bienfait H. F. Cytosolic NADPH is the electron donor for extracellular Fell reduction in iron-deficient bean roots. Plant Physiology 1984; 75: 219–221
  • Sijmons P. C., Lanfermeijer F. C., Bienfait F. Root NAD(P)H levels in monocotyledonous species differing in their response to iron-deficiency. Plant Physiology Supplement 1984c; 75, No. 1083.
  • Slayman C. L. Movement of ions and electrogenesis in microorganisms. American Zoology 1970; 10: 377–392
  • Smarelli J., Campbell W. H. NADH dehydrogenases activity of higher plant nitrate reductase (NADH). Plant Science Letters 1979; 16: 139–147
  • Solomonson L. P., Barber M. J. Assimilatory nitrate reductase: functional properties and regulation. Annual Review in Plant Physiology and Molecular Biology 1990; 41: 225–253
  • Spring O., Wolz C., Hager A. Auxin induced N-ethylma-leimide (NEM) effects on elongation growth of coleoptiles and auxin-induced (14C)-NEM labeling of membrane proteins. Physiologia Plantarum 1988; 72: 305–310
  • Stöhr C., Tischner R., Ward M. K. Characterization of the plasma-membrane-bound nitrate reductase in Chlorella saccharophila (Krüger) Nadson. Planta 1993; 191: 79–85
  • Stöhr C., Glogau U., Matschke M., Tischner R. Evidence for the involvement of plasma-membrane-bound nitrate reductase in signal transduction during blue-light stimulation of nitrate uptake in Chlorella saccharophila. Planta 1995; 197: 613–618
  • Stöhr C., Schuler F., Tischner R. Glycosyl-phosphati-dylinositol-anchored proteins exist in the plasma membrane of Chlorella saccharophila (Krüger) Nadson: Plasma membrane-bound nitrate reductase as an example. Planta 1995; 196: 284–287
  • Struglics A., Fredlund K. M., Rasmusson A. G., Møller I. M. The presence of a short redox chain in the membrane of intact potato tuber peroxisomes and the association of malate dehydrogenase with the peroxisomal membrane. Physiologia Plantarum 1993; 88: 19–28
  • Susin S., Abadia A., González-Reyes J. A., Lucena J. J., Abadia J. The pH requirements for in vivo activity of the iron-deficiency-induced 'turbo' ferric chelate reductase. Plant Physiology 1996; 110: 111–123
  • Sutherland M. W. The generation of oxygen radicals during host plant responses to infection. Physiological and Molecular Plant Pathology 1991; 39: 79–93
  • Szabo-Nagy A., Erdei L. The effects of iron deficiency on the ATPase and ferricyanide reductase activities of plasma membrane purified by phase partitioning from sunflower roots. Journal of Plant Physiology 1993; 142: 579–584
  • Takahama U. Redox state of ascorbic acid in the apoplast of stems of Kalanchoe daigremontiana. Physiologia Plantarum 1993; 89: 791–798
  • Takeuchi Y., Kubo H., Kasahara H., Sakaki T. Adaptive alterations in the activities of scavengers of active oxygen in cucumber cotyledons irradiated with UV-B. Journal of Plant Physiology 1996; 147: 589–592
  • Tanaka O., Cleland C. F. Comparison of the ability of salicylic acid and ferricyanide to induce flowering in the long-day plant, Lemna gibba G3. Plant Physiology 1980; 65: 1058–1061
  • Taylor A., Assmann S. Electrophysiological study of blue light-modulated plasma membrane pump current in guard cells of Vicia faba. 10th International Workshop on Plant Membrane Biology, RegensburgGermany, 6–11 August, 1995, (abstract No. S14)
  • Thibaud J. B., Romieu C., Gibrat R., Grouzis J. P., Grignon C. Local ionic environment of plant membranes: effects on membrane functions. Zeitschrift für Pflanzenphysiologie 1984; 114: 207–213
  • Tischner R., Ward M. R., Huffaker R. C. Evidence for a plasma-membrane-bound nitrate reductase involved in nitrate uptake of Chlorella sorokiniana. Planta 1989; 178: 19–24
  • Tischner R., Waldeck B., Goyal S. S., Rains W. D. Effect of nitrate pulses on the nitrate-uptake rate, synthesis of mRNA coding for nitrate reductase, and nitrate-reductase activity in the roots of barley seedlings. Planta 1993; 189: 533–537
  • Trockner V., Marré E. Plasmalemma redox chain and H' extrusion. II. respiratory and metabolic changes associated with fusicoccin-induced and with ferricyanide-induced H' extrusion. Plant Physiology 1988; 87: 30–35
  • Trost P., Bonora P., Scagliarini S., Pupillo P. Purification and properties of NAD(P)H:(quinone-acceptor) oxidoreductase of sugarbeet cells. European Journal of Biochemistry 1995; 234: 452–548
  • Ullrich C. I., Köhler K., Baier M., Förster B., Hartung W. Neutral red as a redox dye induces K' efflux and current-voltage changes in Eremosphaera, Lemna and guard cells. Botanica Acta 1990; 103: 214–221
  • Valenti V., Minardi P., Guerrini F., Mazzucchi U., Pupillo P. Increase of plasma membrane NADH-duroquinone reductase in tobacco leaves treated with protein-lipopolysaccharide complexes. Plant Physiology and Biochemistry 1989; 27: 569–576
  • Vianello A., Macri F. Generation of superoxide anion and hydrogen peroxide at the surface of plant cells. Journal of Bioenergetics and Biomembranes 1991; 23: 409–423
  • Ward M. R., Tischner R., Huffaker R. C. Inhibition of nitrate transport by anti-nitrate reductase lgG fragments and the identification of plasma membrane associated nitrate reductase in roots of barley seedlings. Plant Physiology 1988; 88: 1141–1145
  • Welch R. M., LaRue T. A. Physiological characteristics of Fe accumulation in the 'bronze' mutant of Pisum sativum L., cv 'Sparkle' E107 (brz brz). Plant Physiology 1990; 93: 723–729
  • Welch R. M., Webb M. J., Loneragan J. F. Zinc in membrane function and its role in phosphorous toxicity. Proceedings of 9th International Plant Nutrition Colloquium, A. Scaife. Commonwealth Agricultural Bureau, Farham Royal Bucks 1982; 711–715
  • Widell S. Membrane-bound blue light receptors—possible connection to blue light photomorphogenesis. Blue Light Responses: Phenomena and Occurrence in Plants and Microorganisms, H. Senger. CRC Press, Boston, MA 1987; 2: 89–98
  • Widell S., Larsson C. Distribution of cytochrome b photo-reduction by endogenous photosensitizer or methylene blue in fractions from corn and cauliflower. Physiologia Plantarum 1983; 57: 196–202
  • vonWiren N., Marschner H., Römheld V. Uptake of Zn-phytosiderophores in maize. 10th International Workshop on Plant Membrane Biology, RegensburgGermany, 6–11 August, 1995, (abstract No. R43)
  • Xu J. X., King T. E. Two-site property of thenoyltri-fluoroacetone inhibiting succinate-ubiquinone reductase. Science China Series. B—Chemistry in Life Science and Earth 1992; 35: 162–168
  • Yamaguchi H., Fujiwara T., Mori S. Genetic introduction of the gene coding yeast ferric reductase into tobacco plants. International Conference of Bioiron (ICBI). Asheville, North Carolina 16–21 April, 1995; 84
  • Yi Y., Saleeba J. A., Guerinot M. L. Iron uptake in Arabidopsis thaliana. Biochemistry of Metal Micronutrients in the Rhizosphere, J. A. Manthey, D. E. Crowley, D. G. Luster. Lewis, Boca Raton, FL 1994; 295–307
  • Yuan D. S., Steaman R., Dancis A., Dunn A., Buler T., Klaussner R. D. The Menk/Wilson diseases gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proceedings of the National Academy of Sciences, USA 1995; 92: 2632–2636
  • Zaharieva T., Yamashita K., Matsumoto H. Changes in ascorbate metabolism in iron deficient cucumber plants. International Conference of Bioiron (ICBI). Asheville, North Carolina 16–21 April, 1995; 168
  • Zhao S., Colombo S. J., Blumwald E. The induction of freezing tolerance in jack pine seedlings: The role of root plasma membrane H'-ATPase and redox activities. Physiologia Plantarum 1995; 93: 55–60
  • Zimmerman U. Electrical breakdown, electropermeabilization and electrofusion. Reviews in Physiological Biochemistry and Pharmacology 1986; 105: 175–256

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.